
A N E X T E N S I O N O F A F U N C T I O N A L I N T E R M E D I AT E
L A N G U A G E F O R PA R A L L E L I Z I N G S T E N C I L
C O M P U TAT I O N S A N D I T S O P T I M I Z I N G G P U

I M P L E M E N TAT I O N U S I N G O P E N C L

B A S T I A N H A G E D O R N

Masterthesis

Computer Science Department
Parallel and Distributed Systems

University of Münster

first supervisor : Prof. Dr. habil. Sergei Gorlatch
(University of Münster)

second supervisor : Dr. Michel Steuwer
(University of Edinburgh)

September 2016

Bastian Hagedorn: An Extension of a Functional Intermediate Language
for Parallelizing Stencil Computations and its Optimizing GPU Implemen-
tation using OpenCL, Masterthesis, © September 2016

Dedicated to my wife.

Another lesson we should have learned from the past is that
the development of "richer" or "more powerful" programming languages

was a mistake in the sense that these baroque monstrosities,
these conglomerations of idiosyncrasies,

are really unmanagable, both mechanically and mentally.

I see a great future for very systematic
and very modest programming languages.

— Edsger W. Dijkstra [18]

A C K N O W L E D G M E N T S

First of all, I thank my supervisor Sergei Gorlatch for giving me the
freedom to pursue my research interest. I’m especially thankful for
my research visit at the University of Edinburgh where I met numer-
ous inspiring and supportive people. I have greatly benefited from
collaborating with Michel Steuwer, Christophe Dubache and Toomas
Remmelg. I thank my second supervisor Michel Steuwer for his con-
tinuous support and encouragement and I am thankful for the nu-
merous inspiring discussions with Christophe Dubache. I appreciate
their support and I am looking forward to continue our collaboration
on the work described in this thesis. I’m grateful for the financial sup-
port received from the EuroLab-4-HPC which made my research visit
to Edinburgh possible.

I thank Michael Haidl and Ari Rasch for the fruitful discussions
during my work in Münster. I thank my family and my sister for
their support and interest in my research. Last, but not least I thank
my wife for her never-ending support, love and encouragement.

v

C O N T E N T S

1 introduction and background 1

1.1 Motivation . 1

1.2 Background . 2

1.2.1 GPU Programming in OpenCL 2

1.2.2 Structured Parallel Programming 5

1.2.3 The LIFT Framework 5

1.2.4 Stencil Computations 7

1.3 Related Work . 8

1.4 Contributions . 9

2 expressing stencil computations using high-level

functional primitives 11

2.1 Formal Definition of Stencil Computations 12

2.2 High-Level Algorithmic Functional Primitives 14

2.2.1 Creating Neighborhoods Using the Slide Primitive 17

2.2.2 Boundary Handling Using the Pad Primitive . . 19

2.2.3 Stencils as Composition of Pad, Slide and Map 20

2.3 Multidimensional Stencils 24

2.3.1 Two Dimensional Boundary Handling Using Pad 25

2.3.2 Creating Two Dimensional Neighborhoods Us-
ing Slide . 26

2.3.3 Multidimensional Stencil Examples 27

2.4 Summary . 32

3 optimizing stencil computations using low-level

primitives 33

3.1 Low-Level OpenCL-Specific Functional Primitives . . . 33

3.2 Optimizing Stencil Convolution 34

3.2.1 Naive Version . 35

3.2.2 Applying Tiling to Utilize Local Memory 37

3.2.3 Increasing Efficiency by Separating Convolution 45

3.2.4 Transposing the Local Memory Tile in the Col-
umn Convolution 54

3.2.5 Loop Unrolling and Reducing Boundary Checks 61

3.3 Summary . 63

4 generating high performance opencl code 67

4.1 LIFT View System . 69

4.2 Index Computation Simplification 72

4.3 OpenCL Code Generation 73

4.4 Summary . 75

5 evaluation 77

5.1 Experimental and Hardware Setup 77

5.2 Performance of Handwritten Convolution Kernels . . . 77

5.3 Performance of Generated Convolution Kernels 78

vii

viii contents

5.4 Measuring the Overhead of Unsimplified Arithmetic
Expressions . 81

5.5 Performance Compared to Nvidia Toolkit Example . . 83

6 conclusion 85

a appendix 87

a.1 OpenCL kernels implementing optimizations for the
17× 17 convolution . 87

a.2 Correctness Proofs for Rewrite Rules 100

a.3 Systematical Rewriting of Functional Expressions . . . 101

bibliography 103

L I S T O F F I G U R E S

Figure 1 Overview of a CPU and GPU architecture (in-
spired by [57]) 2

Figure 2 Overview of the compilation flow of the LIFT
Framework (inspired by [57]) 6

Figure 3 Conceptual structure of a functional program
describing a stencil computation 20

Figure 4 3-point Jacobi stencil illustration 21

Figure 5 Computation steps for a high-level expression
describing a one dimensional heat diffusion
application . 23

Figure 6 Padding a matrix using pad and transpose . . . 25

Figure 7 Using slide to create neighborhoods for a 2× 2
4-point stencil 26

Figure 8 Computation steps for a high-level expression
describing a two dimensional convolution . . . 30

Figure 9 Applying the Gaussian Blur filter to the Lena
image often used as an example in image pro-
cessing . 31

Figure 10 Naive computation of a 17 × 17 convolution
using global work-items to sequentially com-
pute a single output element 37

Figure 11 Performance of a naive 17×17 convolution com-
pared to a version that applies overlapped tiling
with and without idle work-items 38

Figure 12 Overlapped Tiling for a 3-point stencil in one
dimension . 39

Figure 13 Expressing Overlapped Tiling using slide: Ap-
plying slide to the input creates overlapping
tiles. Applying slide to every tile creates the re-
quired neighborhoods 39

Figure 14 Applying overlapped tiling in two dimensions 42

Figure 15 Tile shape for a 17× 17 convolution 42

Figure 16 Illustration of a two dimensional convolution
using separated convolution kernels 46

Figure 17 Performance of an improved tiled and sepa-
rated 17×17 convolution compared to convo-
lutions implementing other optimizations . . . 46

Figure 18 Applying the Sobel edge detection filter to the
Lena image . 49

Figure 19 Comparison of tiles for convolutions in one
and two dimensions 51

ix

Figure 20 Arrangement of overlapping tiles in separate
convolution . 51

Figure 21 Arrangement of overlapping tiles in the col-
umn convolution to coalesce global memory
accesses . 54

Figure 22 Column convolution: Copying transposed tile
to local memory 54

Figure 23 Performance of column convolutions when trans-
posing tiles and adding extra columns 55

Figure 24 Column convolution: Arrangement of banks for
transposed tile on GPUs with 16 banks 57

Figure 25 Column convolution: Memory access of a sin-
gle work-group when transposing the tile be-
fore copying to local memory 58

Figure 26 Column convolution: Arrangement of banks for
transposed tile on GPUs with 32 banks 61

Figure 27 Visualizing iterations to load a tile from global
to local memory 62

Figure 28 Performance of column convolution with re-
duced boundary checks compared to previous
column convolutions 63

Figure 29 Compilation steps to compile a high-level ex-
pression to an OpenCL kernel 67

Figure 30 Construction of LIFT’s views for a 3-point Ja-
cobi stencil . 69

Figure 31 Consumption of LIFT’s views for a 3-point Ja-
cobi stencil . 70

Figure 32 Performance of handwritten OpenCL kernels
(incrementally) implementing specific optimiza-
tions . 78

Figure 33 Comparing generated kernels to handwritten
references for complete and row convolution . 80

Figure 34 Comparing performance of the generated col-
umn convolution to the handwritten convolution 82

Figure 35 Speedup of kernels using simplified arithmetic
expressions compared to kernels without arith-
metic simplification 82

Figure 36 Performance of the generated 17 × 17 convo-
lution and the ConvolutionSeparable Example
(Nvidia Toolkit) 83

x

L I S T O F TA B L E S

Table 1 Description of evaluated handwritten OpenCL
kernels including references to sections where
each optimization is discussed 79

L I S T I N G S

Listing 1 High level expression for a 17× 17 convolution 36

Listing 2 Naive mapping of a 17×17 convolution to low-
level primitves 36

Listing 3 Low-level expression for a 3-point Jacobi exam-
ple . 39

Listing 4 Low-level expression for a 3-point Jacobi ap-
plying Overlapped Tiling 40

Listing 5 Low-level expression for a 17× 17 convolution
applying Overlapped Tiling 43

Listing 6 Low-level expression for a 17 × 17 Convolu-
tion applying Overlapped Tiling and using lo-
cal memory . 44

Listing 7 Functionally assigning work to work-groups
and work-items using low-level primitives . . 44

Listing 8 17× 17 convolution separated into a row and
column convolution 47

Listing 9 Applying Overlapped Tiling and using local
memory in the row and column convolution . 52

Listing 10 Low-level expression creating tiles that enfore
uncoalesced global memory access in column
convolution . 53

Listing 11 Low-level expression creating tiles that enable
coalesced global memory access in column con-
volution . 53

Listing 12 Column convolution: Storing transposed tile in
local memory 56

Listing 13 Column convolution: Avoiding bank conflicts
by artificially increasing the buffer capacity . . 60

Listing 14 Handwritten for-loop that copies a tile from
global to local memory 62

Listing 15 Expression to copy a tile from global to local
memory . 63

xi

xii Listings

Listing 16 Low-level expression to copy a tile from global
to local memory using loop unrolling 64

Listing 17 High level expression for a 17× 17 convolution 64

Listing 18 Low-level expression for a 17×17 convolution
applying all optimizations discussed in this the-
sis . 65

Listing 19 Low-Level Expression for a simple 3-Point Ja-
cobi stencil . 69

Listing 20 OpenCL code generated for accessing the in-
put array for 3-point Jacobi stencil 71

Listing 21 Unsimplified automatically generated array an-
dex . 72

Listing 22 OpenCL kernel generated for a 3-point Jacobi
stencil . 74

Listing 23 Comparison of for-loops that copy a tile from
global to local memory 81

Listing 24 OpenCL kernel implementing a naive 17× 17
convolution . 87

Listing 25 OpenCL kernel implementing 17× 17 convolu-
tion using local memory 88

Listing 26 OpenCL kernel implementing 17× 17 convolu-
tion avoiding idle threads 89

Listing 27 OpenCL kernel implementing 17-point row con-
volution . 90

Listing 28 OpenCL kernel implementing 17-point column
convolution . 91

Listing 29 OpenCL kernel implementing tiled 17-point row
convolution . 92

Listing 30 OpenCL kernel implementing tiled 17-point col-
umn convolution 93

Listing 31 OpenCL kernel implementing improved tiled
17-point row convolution 94

Listing 32 OpenCL kernel implementing improved tiled
17-point column convolution 95

Listing 33 OpenCL kernel implementing transposed tile
17-point column convolution 96

Listing 34 OpenCL kernel implementing inreased trans-
posed tile 17-point column convolution 97

Listing 35 OpenCL kernel implementing wider increased
transposed tile 17-point column convolution . 98

Listing 36 OpenCL kernel implementing wider increased
transposed tile 17-point column convolution . 99

1
I N T R O D U C T I O N A N D B A C K G R O U N D

Nowadays, Graphics Processing Units (GPUs) are an inherent part of
high-performance computing. GPUs are used to accelerate compute-
heavy parts of applications, they speed up computations of many
scientific applications like stencil computations which appear in ap-
plications like digital signal processing or computer simulations. In
this thesis, we introduce a functional approach to parallelize stencil
computations for modern GPUs. We provide a high-level functional
language that enables the expression of stencil computations by com-
posing functional primitives. Based on the ideas of algorithmic rea-
soning, these expressions are rewritten into a functional Intermediate
Language (IL) and eventually used to automatically generate high-
performance OpenCL code for GPUs.

1.1 motivation

Using a functional approach to generate high-performance code for
modern GPUs has already been proven to be successful with the in-
troduction of LIFT. [53, 60]. The main goal of this thesis is to extend
the LIFT framework to support the generation of high-performance
OpenCL stencil kernels. Inspired by the ideas of Backus [3], Bird [7],
Cole [15] and many others from the 70’s and 80’s, we use a functional
approach to generate high-performance code for modern GPUs. In
our approach, computations are expressed as compositions of intu-
itive built-in primitives. A formal rewrite system allows to systemati-
cally transform high-level expressions written by a programmer into
efficient low-level expressions written in LIFT’s functional IL (Inter-
mediate Language). This IL is closely related to the OpenCL program-
ming model and bridges the gap between the high-level functional
expression and the imperative OpenCL kernel. By extending LIFT’s
collection of high-level primitives as well as its IL, we provide a pow-
erful functional approach to express and optimize stencil computa-
tions for GPUs. Multidimensional stencil computations are expressed
using our functional language without the use of specialized hard-
coded solutions found in existing library approaches [36, 59]. Well-
known stencil optimizations are formalized and applied as sequences
of rewrite rules. Therefore, our functional IL allows to systematically
(and in the future possibly automatically) apply device-specific low-
level stencil optimizations. Thus, instead of providing one specific
tuned OpenCL kernel for a certain class of stencil computations, we
are able to automatically generate device-specific optimized kernels.

1

2 introduction and background

L2 cache

L1 cache

CPU Core

L2 cache

L1 cache

CPU Core

L2 cache

L1 cache

CPU Core

...

CPU

L3 cache

SM

GPU cores

L1
local

memory

SM

GPU cores

L1
local

memory

...
SM

GPU cores

L1
local

memory

GPU

L2 cache

RAM global memory

Figure 1: Overview of a CPU and GPU architecture (inspired by [57])

1.2 background

In this section, we introduce all concepts and related work required
to understand the rest of this thesis. We start by introducing Graphics
Processing Units (GPUs) and how to program them using OpenCL.
Afterwards, we introduce high-level abstractions that aim to simplify
the programming of GPUs. Then, we introduce the LIFT framework
which is extended in this thesis. Finally, we introduce stencil com-
putations, discuss related work and end this chapter with a list of
contributions made in this thesis.

1.2.1 GPU Programming in OpenCL

Nowadays, Graphics Processing Units (GPUs) are an inherent part of
high performance computing. Although originally designed to specif-
ically accelerate the rendering of complex graphics in computer simu-
lation or 3D-Games, they are now used to perform a far wider range
of computations. This is emphasized by the term General-Purpose com-
putation on Graphics Processing Units (GPGPU) coined by Mark Harris
in 2002. For example, GPUs are heavily used as accelerators in many
scientific applications where compute intensive parts of an applica-
tion are offloaded to the GPU.

Central Processing Units (CPUs) are designed to achieve low in-
struction latency at the cost of having low instruction throughput.
They use large cache hierarchies and cores that are able to prefetch
instructions or execute instructions out-of-order in order to minimize
latency. In contrast, a GPU is designed to achieve high instruction
throughput at the cost of having a higher instruction latency. There-
fore, the architecture of a GPU is significantly different compared to
the architecture of a typical CPU as depicted in Figure 1. A GPU con-
sists of thousands of lightweight cores grouped together in so-called
Streaming Multiprocessors (SM) which is the term used by Nvidia. Fur-
thermore, each SM has its own control units, registers, execution
pipelines and small caches. These SMs execute instructions in a Single

1.2 background 3

Instruction Multiple Data (SIMD) manner. A SM schedules threads in
groups of 32 called warps for execution. Every warp in a SM executes
the same instructions in each step on different data. Modern GPUs
feature four warp schedulers per SM which allows to execute four
warps concurrently.

A GPU contains a large but slow off-chip memory also called global
memory with a capacity of several gigabytes. It is accessible from both
the GPU and CPU, shared among all SMs and analogous to the tra-
ditional RAM (Random Access Memory). Each SM contains a small
amount of fast on-chip memory that is accessible to all cores in a SM
with a capacity of several kilobytes. On modern GPUs, the on-chip
memory is partitioned into a hardware-managed Level-1-Cache and a
programmer-managed local memory. The latency of the on-chip mem-
ory is roughly 100× lower than the latency of the global memory that
is shared among all SMs. Therefore, utilizing the local memory to ex-
ploit data locality is mandatory in high performance GPU programs.
In this thesis, we specifically focus on Nvidia GPUs which are di-
vided into categories called compute capabilities. Compute capabilities
designate a certain GPU architecture and specify supported features.

OpenCL (Open Computing Language) developed by the Khronos
Group in 2008 is an open standard for programming multi-core CPUs,
accelerators like the Intel Xeon Phi or GPUs. OpenCL is defined in
terms of a hierarchy of four different models: the Platform Model, the
Execution Model, the Memory Model and the Programming Model. We
briefly discuss every model in the following.

platform model The Platform Model consists of a host which is
connected to several devices. In this thesis, the host is always the
CPU and the device is the GPU. An OpenCL device is divided
into one or more smaller elements called compute units (CUs)
which are themselves divided into even smaller elements called
processing elements (PEs). Note that this platform model is simi-
lar to the architecture of a GPU: The SMs correspond to the CUs
and the lightweight cores inside a SM correspond to the PEs.

An OpenCL application is divided into the host code and the
device kernel code. In this thesis, we investigate how to generate
efficient device kernel code that is offloaded to the device to
compute stencil computations.

execution model The Execution Model consists of the kernels that
are executed on the device and the host program that is executed
on the host. The communication between a host and a device is
realized by using a command queue. This queue is used to submit
commands that either exchange data between host and device,
or to submit a synchronization command that enforces a cer-
tain execution of commands or to submit a kernel execution.
A work-item is a thread executing a kernel. Work-items are exe-

4 introduction and background

cuted by one ore more PEs and are structured in groups called
work-groups. Work-groups share the on-chip local memory and
local threads inside a work group can be synchronized. Work-
items of different work-groups can not be synchronized. Every
work-item executes a single kernel instance in a SPMD (Singe
Program Multiple Data) manner. Work-items and work-groups
can be structured in a three dimensional grid for execution.

memory model The Memory Model is divided into two parts: The
host memory and the device memory The host memory is the mem-
ory directly available to the host whereas the device memory is
the memory directly available to the kernels executing in de-
vices. The device memory is further divided into four address
spaces or memory regions: The global memory is accessible by all
work-items that can arbitrarily read from or write to this region.
The constant memory is a read-only memory region inside the
global memory accessible by all work-items. The local memory
is a memory region local to a work-group. This memory region
is shared by all work-items of a single work-group. Finally, the
private memory is private to a work-item and not visible to other
work-items. Again, note the similarity between OpenCL’s mem-
ory model and the architecture of a GPU: The main GPU mem-
ory corresponds to the global memory, the fast on-chip memory
corresponds to the local memory and registers correspond to
the private memory.

programming model The Programming Model is divided into the
data parallel model and the task parallel model. We focus on the
data parallel model where kernels are executed by many work-
items organized in work-groups as explained above. In the task
parallel model, kernels are executed by a single work-item and
parallelism is exploited by launching multiple kernels that can
be executed concurrently.

Programming GPUs using OpenCL is error-prone and cumbersome
because it exposes many low-level hardware details. The programmer
has to manually manage the memory hierarchy while being careful
about memory accesses in order to gain high performance. Memory
accesses need to be aligned in order to avoid uncoalesced global mem-
ory accesses and the local memory must be utilized efficiently to hide
the high latency of the global memory. Furthermore the kernel code
needs to manage multiple levels of parallelism for example at work-
group and work-item level and is itself written in a low-level C-like
language.

1.2 background 5

1.2.2 Structured Parallel Programming

There have been several approaches that aim to simplify the pro-
grammability of GPUs. These approaches can be summarized us-
ing the term Structured Parallel Programming. In the late 80’s, Cole
coined the term Algorithmic Skeletons [15] in his PhD thesis and pro-
posed to use a structured approach to the management of parallel
computation [16]. Cole identified several parallel patterns which he
called algorithmic skeletons [47] like Divide & Conquer, that often ap-
peared in code written using simple parallel programming frame-
works like Pthreads or MPI (Message Passing Interface). These pat-
terns can be extracted to libraries that provide parallel building blocks
that can be composed to write parallel programs on a higher level of
abstraction. An algorithmic skeleton is basically a higher order func-
tion that captures a specific parallel pattern, thus specifies the overall
structure of a computation without specifying the details of how to
compute the exact result. The computation is described in so called
user functions or customizing functions that are passed to a skeleton
as arguments. Based on Cole’s ideas, many others argued to raise
the abstraction level of parallel programs using structured parallel
patterns instead low-level programming models. For example Gor-
latch [24] argues to avoid low-level control structures like send and
recv in MPI code and replace them with collective operations which
behave like Cole’s idea of algorithmic skeletons. Since then, different
skeleton libraries have been developed that all aim to simplify par-
allel programming using high-level abstractions. Examples for these
libraries are eSkel [5], Eden [39], SkePU [20], MUESLI [36], Acceler-
ate [13] or SkelCL [59]. The idea to provide high-level building blocks
to simplify parallel programming is nowadays also adapted in many
different standards like the parallel STL (Standard Template Library)
of C++ or Intel’s TBB (Thread Building Blocks). Our work directly
extends Cole’s ideas of algorithmic skeletons as high-level building
blocks and is introduced in the next section.

1.2.3 The LIFT Framework

LIFT is a novel approach to achieve a high level of programming
and performance portability [60]. It compiles a high-level functional
expression to high-performance device-specific OpenCL code. A key
idea in the compilation process of LIFT is to express the algorith-
mic structure of a program as well as device-specific optimizations
using functional primitives. These primitives are divided into two
categories: high-level functional algorithmic primitives and low-level func-
tional OpenCL primitives. LIFT provides a small collection of high-level
functional algorithmic primitives (in the following simply called high-
level primitives) as a high-level interface to the programmer. Simi-

6 introduction and background

High-level
Expression

Algorithmic Primitives

map

reduce

split

...

Transformation using Rewrite Rules

Low-level
Expression

OpenCL Primitives

toLocal

mapWorkgroup

...

Code Generation

OpenCL
Program

Hardware Paradigms

barriers

local memory

...

High-level Programming

Figure 2: Overview of the compilation flow of the LIFT Framework (inspired
by [57])

lar to existing skeleton libraries like SkelCL [59] or Accelerate [13],
a programmer uses these high-level building-blocks to write a func-
tional program that expresses the computation. Similar to the work
of Backus on functional programming systems [3], our high-level
building blocks are either built-in primitives or defined functions com-
posed of primitives or other defined functions. A high-level expres-
sion is then systematically rewritten to another functional represen-
tation consisting of low-level functional OpenCL primitives (in the fol-
lowing simply called low-level primitives) using rewrite rules. These
rewrite rules are based on the concepts of algorithmic reasoning pi-
oneered by Bird and Meertens [7]. A low-level functional expression
closely represents an OpenCL program and is eventually used to gen-
erate imperative OpenCL code. The compilation process of the LIFT
framework is illustrated in Figure 2. Most of the high-level primi-
tives like map or reduce are defined as higher order functions and are
already well known to functional programmers as they are part of
most functional programming languages. LIFT’s high-level primitives
do not capture a complex algorithmic structure like stencil computa-
tions, but are rather designed to capture basic fundamental algorith-
mic structures. Expressing complex problems is achieved by nesting
and composing these high-level primitives.

While high-level primitives capture fundamental algorithmic pat-
terns, LIFT’s low-level primitives combined with the rewrite rules

1.2 background 7

are designed to express common optimization patterns. Therefore, in-
stead of applying optimizations ad-hoc using a rule of thumb, rewrite
rules are used to systematically apply common optimizations for-
malized as functional expressions. Unlike library approaches, where
high-level programs are usually implemented by low-level loop based
code [11, 20, 36], LIFT’s low-level primitives act as an intermediate
language (IL). Therefore, they fill the gap between the high-level al-
gorithmic representation of a program and its low-level hardware-
specific implementation.

In this thesis, we extend the collection of high-level primitives in
order enable the expression of stencil computations. Moreover, we
introduce well-known optimization for stencil computations on GPUs
by using and extending LIFT’s IL.

1.2.4 Stencil Computations

Stencil computations (also known as stencil codes [72]) are a typical al-
gorithmic pattern arising in many scientific application domains like
digital signal processing [12] or time-intensive simulations [9]. They
are considered as one of the original seven dwarfs or motifs of high
performance computing [1].

In a stencil computation, elements of a multidimensional struc-
tured grid are (iteratively) updated. A single element is updated by
performing a stencil operation which applies a so-called stencil func-
tion to a neighborhood of elements. This function describes how to
update each element of the grid by taking the current value of an
element and the values of its neighboring elements into account. The
stencil or stencil shape defines which neighboring elements are used
by the stencil operation. We call this group of elements the neighbor-
hood. A stencil with a neighborhood of n elements is called a n-point
stencil. Border elements of the grid lack some neighboring elements.
Therefore, when updating border elements, a so-called boundary han-
dling is required that specifies how to replace these missing elements
(also called halo elements). Stencils often contain coefficients to com-
pute a weighted average of a neighborhood. These specific stencil
computations are called stencil convolution or simply convolution in
the following. We mainly focus on this subclass of stencil applications
because of its broad use in high performance computing. In case of a
convolution, the stencil that contains numerical values is also called
convolution kernel or simply kernel.

In this thesis, we consider stencil computations where the result of
updating the grid is stored in a secondary grid instead of overwriting
the values of the input grid. These are known as Jacobi-like stencils, in-
stead of Gauss-Seidel-like stencil computations which update element
in place.

8 introduction and background

Although conceptually stencils are easy to implement using nested
loops, it is difficult to write efficient stencil code for GPUs. This is
emphasized by the fact that Nvidia provides a guide on how to op-
timize a 17× 17 convolution [51] which we examine in the following
chapters more extensively.

1.3 related work

In this section, we discuss how the work of this thesis fits in the
context of existing work. We summarize already mentioned related
work and put it into the context of this work.

stencil-specific high-level programming approaches hack
There exist a broad collection of high-level approaches that aim
to simplify the programming of stencil applications on multi
and many-core processors such as GPUs. These include sev-
eral stencil-specific DSLs (Domain Specific Languages) or ED-
SLs (Embedded DSLs) like HLSF [19], and others [2, 14, 29,
32, 46, 65]. Furthermore, there exist multiple frameworks that
support the development of stencil applications like skeleton li-
braries that provide a specific stencil skeleton like SkePU [20],
MUESLI [36] PASTHA [37] and SkelCL [59] and others [6, 33,
43, 49, 50, 55, 63]. In pragma-based approaches, source code is
annotated using pragmas, examples are Mint [67] or PADS [34].
Finally there exist domain specific high-level approaches for do-
mains in which stencil computations occur like solving PDEs
(Partial Differential Equations) [4, 10] or image processing [21,
52].

However, none of these approaches decomposes the stencil pat-
tern into fundamental primitives that act as building blocks to
express different kinds of stencil computations. By decompos-
ing the stencil pattern we are able to use the power of function
composition to express multidimensional stencil computations
without providing specialized implementations for each dimen-
sion. Furthermore, we are able to define functions that are com-
posed of these basic primitives to provide the same level of ab-
straction as the mentioned existing high-level programming ap-
proaches.

Previous work has already proven that the decomposition of
computations into LIFT’s fundamental building blocks is bene-
ficial in case of sparse linear algebra [28] and GEMM (General
Matrix Matrix Multiplication) [53].

optimizations for stencil computations Besides high-level
programming frameworks that aim to simplify the programma-
bility of stencil applications, there exist many different strate-
gies to optimize stencil code to improve performance. These

1.4 contributions 9

include different blocking [48, 68, 70] and tiling approaches [25–
27, 35, 40, 54], and other collections of optimizations [17, 22, 42,
62]. Furthermore, there exist multiple auto-tuning frameworks
that aim to automatically optimize stencil computations [23, 30,
31, 41].

However none of these approaches formalized these optimiza-
tions as we do using a core dependently-typed λ-calculus along
with a denotational semantics and a set of rewrite rules. By
formalizing optimizations this way, we enable to apply them
systematically by an optimizing compiler, instead of applying
them ad-hoc using imprecise rules of thumb. Moreover, we are
able to prove that applying optimizations does not change the
semantics of programs.

Previous work [58, 60] already showed how a formal rewrite
system can be used to systematically apply optimizations to
achieve high performance.

high perfomance code generation High-level languages like
Accelerate [44], Delite [64], StreamIt [66] or Halide [52] aim to
simplify the programming of GPUs by providing several par-
allel patterns or algorithmic skeletons. The semantics of algo-
rithmic skeletons offer unique opportunities for compilers to
optimize a given program. However, all of these approaches
are compiled to low-level loop based code at an early stage of
the compilation process. Using a functional data parallel IL (In-
termediate Language) prevents us from losing this information
which is used multiple times in our code generation process.

1.4 contributions

This thesis makes the following three main contributions:

a new high-level approach to program stencil computations

We extend the LIFT framework with two new high-level prim-
itives slide and pad, inspired by decomposing the algorithmic
stencil pattern into its fundamental algorithmic building blocks.
Multidimensional stencil computations are then defined as com-
positions of LIFT’s primitives.

formalization of optimizations for stencil computations

We express well-known stencil optimizations by using and ex-
tending LIFT’s IL. Two new low-level primitives, mapSeqUnroll
and increase, enable the specification of stencil-specific optimiza-
tions using our functional approach This enables the system-
atic (and in the future possibly automatic) application of stencil-
specific optimizations instead of optimizing applications ad-hoc
using imprecise rules of thumb.

10 introduction and background

generation of high-performance stencil code for gpus

By improving LIFT’s existing OpenCL code generator, we are
able to generate high performance stencil kernels that are com-
petitive with hand-tuned stencil code from Nvidia.

2
E X P R E S S I N G S T E N C I L C O M P U TAT I O N S U S I N G
H I G H - L E V E L F U N C T I O N A L P R I M I T I V E S

Using a functional programming language to express computations
allows to exploit unique opportunities when generating code for high
performance applications. Our goal is to design a language consisting
of a few small but powerful built-in primitives. By the power of func-
tion composition, we are able to express a wide range of applications.
These functional programs tend to be short and have advantages com-
pared to programs written in conventional low-level imperative pro-
gramming languages (for example like OpenCL C) as already men-
tioned in [3]. These programs are hierarchically structured while con-
taining simple primitives combined by function composition and do
not contain loops nor control statements. One of the most important
advantages compared to imperative programs is that functional pro-
grams do not unnecessarily constrain the order of computations. This
allows to execute parts of a functional program in parallel. Thus, they
are inherently parallel which perfectly fits high-performance comput-
ing and makes them a natural candidate to express stencil compu-
tations. Finally, using a formal set of rewrite rules, functional pro-
grams can be rewritten while provably preserving the semantics into
more efficient programs as we observe in the following chapters. LIFT
uses the old and well-known ideas of expressing and rewriting com-
putations using functional primitives already studied by Backus [3],
Bird [7] and Cole [15], to generate code for modern accelerators like
GPUs.

The remainder of this chapter is structured as follows. We begin
by introducing the formalism used in this thesis and formally define
stencil computations. Afterwards, we introduce how we decompose
the stencil pattern into its fundamental algorithmic building blocks
using the formal definition of stencil computations. These fundamen-
tal building blocks are implemented as new functional high-level
primitives in the LIFT framework. We then show how to compose
and nest the new primitives with existing ones to express arbitrary
and multidimensional stencil computations. We focus on one and two
dimensional stencil computations in this thesis although the primi-
tives might also be used to express higher dimensional stencil com-
putations using the techniques introduced in the following sections.
We express the stencil pattern as a composition of the fundamental
algorithmic building blocks. Using the advantages of a functional
programming language, we are able to define a high-level stencil
function composed of built-in primitives. Instead of manually com-

11

12 expressing stencil computations using high-level functional primitives

posing these primitives, a programmer can use these high-level func-
tions that offer the same level of abstraction as existing high-level
approaches.

notation We use the same notation as in [57] which is similar to
the Bird-Meertens formalism [8] to define the semantics of our primi-
tives. Specifically this means that we write function application using
a space between the function and its argument: f x. Functions are
curried and function application is left associative i. e. f x y means
(f x) y. For an array xs with n elements xi we write [x1, . . . , xn]. To
increase readability in the examples, we sometimes write [abcdef] in-
stead of [a, . . . , f], denoting an array with six elements. For sequential
function composition we use the ◦ operator, e. g.(f ◦ g) x = f(g x). We
are especially interested in nesting and composing high-level primi-
tives to express more complex computations. In order to define how
primitives can be combined, we specify the type for each primitive:
We write e : σ to denote that expression e has the type σ. Functions
that map elements from type α to type β are denoted as: α→ β. Since
functions are curried, we write f : α → β → γ for the type of a func-
tion that takes elements of type α and β and produces an element
of type γ. Tuple types are denoted as 〈α,β〉 and the type of an array
with elements of type α and length n is written as [α]n.

2.1 formal definition of stencil computations

In this section, we formally define stencil computations to observe
their fundamental algorithmic parts. Our goal is to express stencil
computations using LIFT’s high-level primitives. We formally define
a one dimensional stencil computation [57]:

definition 2 .1: Let xs be an array of size n with elements xi where
0 < i 6 n. Let f be a unary function, l and r be positive integer values, and
b be an out-of-bound handling function. A stencil computation on array xs
is formally defined as follows:

stencil f l r b [x1, x2, . . . , xn]
def
= [y1,y2, . . . ,yn]

where

yi = f [xi−l, . . . , xi+r] ∀ i : 0 < i 6 n
and

xj = b j ∀ j : −l < j 6 0 ∨ n < j 6 n+ r

The stencil function f is applied to a neighborhood of size l+ r+ 1
for every element of the input xs.

As an example, we examine how to express a 17-point convolution
with a convolution kernel ws containing the weights, and a boundary
function b that returns the border values on out-of-bound accesses:

2.1 formal definition of stencil computations 13

example 2 .1:

convolution17 b ws xs
def
= stencil (f ws) 8 8 b xs

where

f [w1, . . . ,w17] [x1, . . . , x17] = w1 · x1 + · · ·+w17 · x17

Since we define multidimensional data structures as nested arrays,
we use the terms array of arrays and matrix interchangeably. Thus,
instead of writing

[[x1,1, . . . , x1,m], . . . , [xn,1, . . . , xn,m]]

we may also write
[x1,1 . . . x1,m]

...

[xn,1 . . . xn,m]

 or

x1,1 . . . x1,m

...
...

xn,1 . . . xn,m

The formal definition of a stencil computation on matrices similar to
Definition 2.1 and [57] is given in the following:

definition 2 .2: Let xs be an array of size m whose elements are arrays
of size n. Let f be a unary function and h be a function specifying the
boundary handling. Let t, b, l and r be four positive integer values defining
the stencil shape in two dimensions. Let u = l+ r+ 1 and v = t+ b+ 1. A
stencil computation on matrices is then defined as follows:

stencil2d f t b l r h

x1,1 . . . x1,m

...
...

xn,1 . . . xn,m

 def
=

y1,1 . . . y1,m

...
...

yn,1 . . . yn,m

where

yi,j = f

xi−l,j−t . . . xi+r,j−t

...
...

xi−l,j+b . . . xi+r,j+b

∀i, j : 0 < i 6 n 0 < i 6 m

and

xi,j = h i j

∀i : −l < i 6 0∨n < i 6 n+ r,

∀j : −t < j 6 0∨m < j 6 m+ b,

As another example we define a two dimensional convolution in
terms of this stencil function. Let b be an arbitrary boundary function.
A 17× 17 convolution as in [51] can then be defined as follows:

example 2 .2:

conv17x17 b ws xs = stencil2d (f ws) 8 8 8 8 b xs

14 expressing stencil computations using high-level functional primitives

where f is a function that pairwise multiplies all elements of the neighbor-
hoods and its weights and sums up the results.

In the following section, we analyze stencil computations using
these definitions and extract their fundamental parts as primitives.

2.2 high-level algorithmic functional primitives

We express stencil computations by extending and using LIFT’s high-
level primitives [60] which are defined as higher order functions.
Higher order functions are a well-known concept in functional pro-
gramming which describes functions that take one or more functions
as arguments, so called procedural parameters or customizing functions.
In fact, most of these high-level primitives, like map or reduce already
exist in functional programming languages.

Following the ideology of LIFT’s high-level primitives, we want to
decompose the algorithmic structure of stencil computations and ex-
press these using the most basic fundamental algorithmic building
blocks. Therefore, instead of defining a single high-level stencil prim-
itive, we express stencil computations by composing small generic
primitives. Looking at the formal definitions of a stencil computations
given in Definition 2.1 and Definition 2.2, we can see that algorithmi-
cally, a stencil computation consists of three fundamental parts that
are specified as arguments to the different stencil functions:

A. For every element, consider a neighborhood of a given size
(specified by the shape of the stencil which is specified by pa-
rameters l and r in Definition 2.1)

B. Apply a function to every neighborhood to compute a single
output element (specified by the stencil function f in Defini-
tion 2.1)

C. In case of border elements apply boundary handling using a
given function (specified by parameter b in Definition 2.1)

Hence, we use three high-level primitives that each captures exactly
one of these algorithmic parts. Part B, apply a function to every . . . ,
might already sound familiar to a functional programmer. This is
exactly what the map primitive does which we formally introduce
shortly. Furthermore, we introduce two new primitives which capture
the other two parts A and C.

Decomposing stencil computations allows us to focus on each fun-
damental part separately instead of providing a solution that covers
all parts at once. By composition we are able to combine these build-
ing blocks to express stencil computations in arbitrary dimensions.
In the course of this chapter we define several functions composed of
our built-in high-level primitives. These allow to avoid repeating of-
ten occurring combinations of specific primitives. We consider these

2.2 high-level algorithmic functional primitives 15

functions as zero-cost abstractions because they raise the abstraction
level to the same level of existing library approaches without provid-
ing a fixed solution for specific dimensions. Thus, without being a
built-int primitive of the functional language.

By defining simple and stencil independent primitives, we are able
to use them in various ways. For example to express optimizations
as we will see in the following chapters. Moreover, they might also
be used to express computations of different domains for example
convolution networks used in machine learning.

In the following, we give formal definitions for a subset of the al-
ready existing high-level primitives which we use in the course of this
thesis to express stencil computations. We use the definitions given
in [57]:

map map is a well-known element in many functional programming
languages. The map primitives applies a given unary function f
to every element of an array. We formally define map as follows:

definition 2 .3: Let xs be an array of size n with elements xi
where 0 < i 6 n. Let f be a unary customizing function defined on
elements. The map primitive is then defined as follows:

map f [x1, x2, . . . , xn]
def
= [f x1, f x2, . . . , f xn]

The type of map is defined as follows:

map : (α→ β)→ [α]n → [β]n

reduce The reduce primitive, also known as fold or accumulate, com-
bines every element of a given array using a binary operator.
We formally define reduce as follows:

definition 2 .4: Let xs be an array of size n with elements xi
where 0 < i 6 n. Let ⊕ be an associative and commutative binary
customizing operator with the identity element id⊕. The reduce prim-
itive is then defined as follows:

reduce (⊕) id⊕ [x1, x2, . . . , xn]
def
= [id⊕ ⊕ x1 ⊕ x2 ⊕ · · · ⊕ xn]

The type of reduce is defined as follows:

reduce : (α→ α→ α)→ α→ [α]n → [α]1

Note that we define the reduce primitive to return an array con-
taining a single element instead of the element itself.

zip The zip primitive transforms the shape of the data. Given multi-
ple arrays of the same length, it creates a single array of tuples.
We formally define zip for two input arrays as follows:

16 expressing stencil computations using high-level functional primitives

definition 2 .5: Let xs and ys be arrays of size n with elements xi
and yi where 0 < i 6 n. The zip primitive is then defined as follows:

zip [x1, x2, . . . , xn] [y1,y2, . . . ,yn]
def
=

[〈x1,y1〉, 〈x2,y2〉, . . . , 〈xn,yn〉]

The type of zip is defined as follows:

zip : [α]n → [β]n → [〈α,β〉]n

Extending the definition for more than two input arrays is obvi-
ous.

split and join The split and join primitives increase and decrease
the dimension of a given array respectively. We start by defining
the split primitive which divides a given array in an array of
chunks: We formally define split as follows:

definition 2 .6: Let xs be an array of size m with elements xi
where 0 < i 6 m. Let n be an integer value such that m is evenly
divisible by n. The split primitive is then defined as follows:

split n [x1, x2, . . . , xm]
def
=

[[x1, . . . , xn], [xn+1, . . . , x2n], . . . , [xm−n+1, . . . , xm]]

The type of split is defined as follows:

split : (n : int)→ [α]m → [[α]n]m
n

The corresponding join primitive does exactly the opposite by
flattening a given array:

definition 2 .7: Let xs be an array of size mn whose elements are
arrays of size n. We denote the elements of the ith inner array as
x((i−1)×n)+j where 0 < i 6 m

n and 0 < j 6 n. The join primitive is
then defined as follows:

join [[x1, . . . , xn], [xn+1, . . . , x2n], . . . , [xm−n+1, . . . , xm]]
def
=

[[x1, x2, . . . , xm]

The type of join is defined as follows:

join : [[α]n]m
n
→ [α]m

reorder The reorder primitive changes the order of elements in a
given array using a specific permutation. We formally define
reorder as follows:

definition 2 .8: Let xs be an array of size n with elements xi
where 0 < i 6 n. Let σ be an arbitrary permutation of [1, . . . ,n]. The
reorder primitive is then defined as follows:

reorder σ [x1, x2, . . . , xn]
def
= [xσ(1), . . . , xσ(n)]

2.2 high-level algorithmic functional primitives 17

The type of reorder is defined as follows:

reorder : (int→ int)→ [α]n → [α]n

transpose transpose is the first example of a defined function which
is not a built-in primitive, but a function composed of primi-
tives. It transposes a given matrix by flattening it, reordering
the elements using a transposition permutation and splitting it
to create a matrix again. The transpose function is defined as
follows:

definition 2 .9: Let xs be an array of size m whose elements are
arrays of size n. The transpose function is then defined as follows:

transpose
def
= split n ◦ reorder σtranspose ◦ join

The type of transpose is as follows:

tranpose : [[α]n]m → [[α]m]n

In the following, we introduce two new high-level primitives slide and
pad in more detail.

2.2.1 Creating Neighborhoods Using the Slide Primitive

We introduce the slide primitive to LIFT which is used to create an
array of neighborhoods for a given array. It corresponds to the fun-
damental part A of stencil computations identified in the beginning
of Section 2.2. Neighborhoods are created by sliding a window of
a specific size and step over a given array. This results in an extra
dimension in the output array.

definition 2 .10: Let xs be an array of size m with elements xi where
0 < i 6 m. Let n and s be integer values such that

(m−n+ s) mod s = 0 (1)

The slide primitive is then defined as follows:

slide n s [x1, x2, ..., xm]
def
= [Y1, Y2, ...,Yk]

where

Yi = [yi,1,yi,2, ...,yi,n]

yi,j = x(i−1)s+j

and

k =
m−n+ s

s
(2)

The type of slide is defined as follows:

slide : (n : int)→ (s : int)→ [α]m → [[α]n](m−n+s
s)

18 expressing stencil computations using high-level functional primitives

To illustrate the behavior of the slide primitive, consider the follow-
ing example. We want to group each element of the input array with
its left and right neighbor. Thus, we want to create neighborhoods for
a one dimensional 3-point stencil, which we express using the slide
primitive.

example 2 .3:

slide 3 1 [abcdefg] = [[abc][bcd][cde][def][efg]]

For a 3-point stencil, the size n of the sliding window has to be 3.
The step s with which the window is moved over the array has to be
1 because we want to create neighborhoods for every element. How-
ever, note that there is no neighborhood for elements a or g, hence,
no window where a or g are the center element. This is because they
do not have a left or right neighbor. Therefore, the size of the outer-
most array has decreased compared to the size of the input exactly as
defined in Equation 2 of Definition 2.10: k = (7− 3+ 1)/1 = 5. Obvi-
ously, when thinking about stencil computations, we want to create
neighborhoods for border elements as well. We introduce means to
do this later in this chapter. However, the slide primitive is defined
to place its first window at the beginning of its input. Thus, the first
element of the input array always is the first element of the first win-
dow as depicted in Example 2.3. Note that Equation 1 restricts the
semantics of the slide primitive such that the last element of the input
has to be the last element in the last window as well. This way, we
ensure that every window has the same size specified by parameter
n. Thus, the expression slide 2 2 [abcdefg] is not defined. Note that
when n equals s and the input size is evenly divisible by n, slide has
the same semantics as the split primitive introduced earlier:

slide 2 2 [abcdef] = split 2 [abcdef] = [[ab][cd][ef]]

Finally, we look at two other examples of how to use the slide prim-
itive:

example 2 .4:

slide 1 2 [abcdefg] = [[a][c][e][g]]

slide 4 2 [abcdef] = [[abcd][cdef]]

If the step s exceeds the size n, as depicted in the first line of Exam-
ple 2.4, the resulting array does not contain every element of the input.
The second example shows how to create overlapping windows with
a step that is bigger than one. We use the slide primitive this way to
express tiling optimizations, discussed in the next chapter.

To summarize, slide is used to shape an array in different ways: If
the step exceeds the size, it creates windows with a gap in between.
If the step equals the size it behaves like the split primitive and evenly
divides an array into chunks. And finally, if the size exceeds the step
it creates an array of overlapping windows.

2.2 high-level algorithmic functional primitives 19

2.2.2 Boundary Handling Using the Pad Primitive

Now that we specified means to generate an array of neighborhoods
using the slide primitive, we define another primitive which we use
for the boundary handling in stencil computations. We already de-
fined slide expressing the fundamental part A of stencil computations
as identified in the beginning of Section 2.2 and are able to use map to
express part B. In this section, we introduce a new primitive expres-
sion the last fundamental part C of stencil computations. Intuitively,
we want to append the elements that are required to create neighbor-
hoods for border elements to the input array. Thus, before creating
an array of neighborhoods, we want to add extra elements on both
sides of the array. The elements that are added are defined by the
boundary handling of the specific stencil application. This way, we
transform the input array which lacks neighbors for the outermost
elements, to an array where each element of the original array has its
required neighbors next to it.

The pad primitive adds elements to the left and right end of a given
array. Thus, it increases the size of the input array. It is formally de-
fined as follows:

definition 2 .11: Let xs be an array of size n with elements xi where
0 6 i < n. Let l and r be positive integer values and b a binary function
defined on integers. The pad primitive is then defined as follows:

pad l r b [x0, x1, . . . , xn−1]
def
=

[y−l−1, . . . ,y−1, x0, . . . , xn−1, yn, . . . ,yn−1+r]

where

yi = xb(i,n)

The type of pad is as follows:

pad : (l : int)→ (r : int)→ (int→ int→ int)→ [α]n → [α](n+l+r)

The first two arguments specify the amount of elements to be added
on both sides. The boundary function b is used to determine which el-
ements are added. Note that elements that are added to the array are
always elements of the input array. Specifically, the boundary func-
tion maps indices which would exceed the size of the input array to
in-bound indices. Therefore, this definition does not support to pad
constant values to a given array. Three popular boundary functions
are: clamp, mirror and wrap. clamp repeats the left- and rightmost
element. wrap adds elements from the opposite side of the input ar-
ray which mimics a circular buffer in case of a one dimensional input.
Finally,mirror repeats elements in reverse order of the corresponding
side.

To illustrate how the different boundary functions affect the result
of applying the pad primitive, we look at an example. Here, we pad a

20 expressing stencil computations using high-level functional primitives

input

output

boundary handling
using pad

create neighborhoods
using slide

...

3-point stencil

compute output element
 using map stencilfunction

1

2

3

Figure 3: Conceptual structure of a functional program describing a stencil
computation

given input array with an extra element on the left-hand side and two
elements on the right-hand side by using all three different boundary
functions:

example 2 .5:

pad 1 2 clamp [abcdefg] = [aabcdefggg]

pad 1 2 mirror [abcdefg] = [aabcdefggf]

pad 1 2 wrap [abcdefg] = [gabcdefgab]

These boundary functions are defined as follows:

definition 2 .12:

clamp i n =

0 if i < 0

n− 1 if i > n

i otherwise

mirror i n =

−1− i if i < 0

2n− i− 1 if i > n

i otherwise

wrap i n = ((i mod n) +n) mod n

2.2.3 Stencils as Composition of Pad, Slide and Map

Using pad, slide and map, we are able to express stencil computations
on one dimensional arrays. Each of these primitives corresponds to
one of the fundamental parts of stencil computations identified in the

2.2 high-level algorithmic functional primitives 21

input

output

(+) (+)

Figure 4: 3-point Jacobi stencil illustration

beginning of Section 2.2. The functional program which describes the
stencil computation can always be separated into three main parts as
depicted in Figure 3:

1. Boundary Handling - The first part of the functional program de-
scribes the boundary handling for border elements of the input.
This depends on the application and is specified using the pad
primitive corresponding to part C.

2. Create Neighborhoods - The second part of the functional program
describes how to gather all elements required by a given stencil.
We use the slide primitive to create neighborhoods for the stencil
corresponding to part A.

3. Apply Stencil Computation - The last part of the functional pro-
gram describes the application of the computation and corre-
sponds to part B. The stencil function is executed for all neigh-
borhoods which were created before. It might be built of high-
level primitives itself and describes how to compute a single
output element for a given neighborhood.

Figure 3 depicts a 3-point stencil computation. Starting from the top,
we add elements on the left and right-hand side of the input using the
pad primitive. Afterwards, we create neighborhoods using the slide
primitive and apply the stencil function to all neighborhoods using
the map primitive. This results in the following structure:

map stencilFunction︸ ︷︷ ︸
apply computation

◦ slide n s︸ ︷︷ ︸
create neighborhood

◦ pad l r b︸ ︷︷ ︸
boundary handling

Note that the structure of the functional program exactly matches
the algorithmic structure of a stencil computation as identified in the
introduction of Section 2.2. Now, we examine how to use our high-
level primitives to express some examples of stencil computations
functionally.

2.2.3.1 3-Point Jacobi

To begin with, consider a simple example of applying a 3-point Jacobi
stencil which sums up all elements as illustrated in Figure 4. For
boundary handling, we use the clamp function to repeat the border
elements. This stencil is expressed using the new primitives:

22 expressing stencil computations using high-level functional primitives

example 2 .6 (3 point jacobi):

3PointJacobi
def
= map f ◦ slide 3 1 ◦ pad 1 1 clamp

where the stencil function f is defined as

f = reduce (+) 0

Now consider to apply this function to the array [1, 2, 3, 4, 5]:

(map f ◦ slide 3 1 ◦ pad 1 1 clamp) [1, 2, 3, 4, 5]

= (map f ◦ slide 3 1) [1, 1, 2, 3, 4, 5, 5]

= map f

[1, 1, 2]

[1, 2, 3]

[2, 3, 4]

[3, 4, 5]

[4, 5, 5]

=

f [1, 1, 2]

f [1, 2, 3]

f [2, 3, 4]

f [3, 4, 5]

f [4, 5, 5]

= [4, 6, 9, 12, 14]

2.2.3.2 1D Heat Diffusion

As another example, we consider the computation of a one dimen-
sional heat flow simulation as explained in [61] and [69]. The dis-
tribution of heat in an object e. g. a ring or a bar is described by a
parabolic Partial Differential Equation (PDE). To calculate the varia-
tion of temperature over time, a linear combination is built of the
current temperature at a given point and its surrounding tempera-
tures. To compute the temperature for the next time step at a given
point in a one dimensional object, we take the left and right temper-
ature values into account. The equation to calculate the temperature
for timestep k+ 1 at position i for a given diffusion coefficient c is
given by

Tk+1,i = Tk,i + c · (Tk,i−1 − 2Tk,i + Tk,i+1)

= c · Tk,i−1 + (1− 2c) · Tk,i + c · Tk,i+1

Therefore, we need to compute a weighted average of the current and
surrounding temperatures using the given diffusion coefficients. Let
us assume the coefficients are themselves stored in a one dimensional
array cs = [c, 1 − 2c, c] and the current temperatures are stored
in an array ts = [t1, . . . , tn]. The following example illustrates how
to express the 1D heat diffusion computation using our high-level
primitives:

example 2 .7:

heatDiff cs ts
def
= (map (heat cs) ◦ slide 3 1 ◦ pad 1 1 clamp) ts

where the stencil function heat is defined as

heat cs nbh = (reduce (+) 0 ◦map (∗) ◦ zip) cs nbh

2.2 high-level algorithmic functional primitives 23

ts

output

nbh

cs

...
nbhnbh

< < < << <

(map (heat cs) ∘ slide 3 1 ∘
 pad 1 1 clamp)

(map (heat cs) ∘ slide 3 1)

map (heat cs)

(reduce (+) 0 ∘ map (*) ∘ zip)

reduce (+) 0 ∘ map (*)

reduce (+) 0

Figure 5: Computation steps for a high-level expression describing a one
dimensional heat diffusion application

Figure 5 visualizes the computation of Example 2.7 by showing the
intermediate results after evaluating each primitive. Starting from the
top, we use pad and slide to create a 3-point neighborhood for every
element of the input array. The heat function is mapped to every
neighborhood and its evaluation is shown for a single neighborhood.
First, the neighborhood (nbh) and the convolution kernel (cs) are
fused to an array of tuples using zip. Second, both elements of every
tuple are multiplied using map and the results are added using reduce
to compute the single output element.

2.2.3.3 1D Convolution

The heat diffusion is a concrete example for a general class of sten-
cil computations called convolution. We already briefly discussed con-
volutions in the previous chapter and formally define them in this
section. Convolutions are used in a wide range of applications for
example in machine learning or image processing. In one dimension,
the convolution operator ∗ is defined as in [38]:

definition 2 .13: Let Ω be an array of size n and r be a positive integer
value. Let K be an array of size 2r + 1. The one dimensional convolution
operator is then defined as:

(Ω ∗K)(x) =
r∑

i=−r

Ω(x+ i) ·K(i)

Ω denotes the grid which is updated during the stencil computa-
tion (xs in Example 2.7). K denotes the convolution kernel which is a

24 expressing stencil computations using high-level functional primitives

small array that contains the weights or coefficients (cs in the same
example). Finally, r denotes the radius of the stencil shape, thus, for
a typical three point stencil r equals 1 because the stencil takes one
neighbor to the left and one to the right into account. We general-
ize the heat diffusion example by defining a convolution1d function
that uses our high-level primitives:

definition 2 .14: Let Ω be an array of length n and r be a positive
integer denoting the radius of the stencil. Let K be an array of length 2r+ 1
denoting the convolution kernel. The convolution1d function is defined as
follows:

convolution1d b K Ω = Ω ∗b K
def
=

(map (conv K) ◦ slide (2r+ 1) 1 ◦ pad r r b) Ω

where

conv K nbh = (reduce (+) 0 ◦map (∗) ◦ zip) K nbh

where ∗b is the convolution operator using boundary function b.

Note that we do not have to introduce a new primitive to express
convolutions. Instead we are able to use our existing primitives to
define a convolution1d function composed of primitives. Now we
can use the new convolution1d function to define the heat diffusion
from the previous section:

example 2 .8:

heatDiffiusion c xs
def
= convolution1d clamp [c, (1− 2c), c] xs

A generic 17-point convolution can also be easily expressed by pro-
viding an array containing 17 weights to the convolution1d function.
For example:

convolution1d mirror [w1, . . . ,w17] xs

2.3 multidimensional stencils

One dimensional stencil computations are of limited use in real life
applications. Therefore, we are especially interested in how to express
multidimensional stencil computations, i. e., stencil computations op-
erating on higher dimensional data structures like matrices or cubes.
In this section, we focus on two dimensional stencil computations
and explain how to use our high-level primitives to express them
without introducing new specialized primitives that are defined on
higher dimensional data structures. By applying the same techniques
which we use to express 2D stencil computations, one could also use
our high-level primitives to express ever higher dimensional stencil
computations.

2.3 multidimensional stencils 25

(transpose ∘
 pad 1 2 wrap ∘
 transpose ∘
 pad 1 2 clamp)

[a b c d]
[e f g h]
[i j k l]
[m n o p]

(transpose ∘
 pad 1 2 wrap ∘
 transpose)

[a b c d]
[a b c d]
[e f g h]
[i j k l]
[m n o p]
[m n o p]
[m n o p]

[a a e i m m m]
[b b f j n n n]
[c c g k o o o]
[d d h l p p p]

(transpose ∘
 pad 1 2 wrap)

[a a e i m m m]
[b b f j n n n]
[c c g k o o o]
[d d h l p p p]

[d d h l p p p]

[a a e i m m m]
[a a e i m m m]

transpose

[d a b c d a b]
[d a b c d a b]
[h e f g h e h]
[l i k j k l i j]
[p m n o p m n]
[p m n o p m n]
[p m n o p m n]

Figure 6: Padding a matrix using pad and transpose

To be able to express multidimensional stencil computations, we
need to express each fundamental part of stencil computations iden-
tified in Section 2.2 using our high-level primitives. Therefore, we dis-
cuss how to express boundary handling and neighborhood creation
in two dimensions and how to apply the stencil function to these two
dimensional neighborhoods. The exact same strategies can be used to
express stencil in arbitrary dimensions which emphasizes the power
of composing fundamental building blocks.

2.3.1 Two Dimensional Boundary Handling Using Pad

We start by examining how to pad a matrix in both dimensions using
the pad primitive which is defined on arrays. As an example we pad
a two dimensional array of size 4× 4 in every dimension as depicted
in Figure 6. In this example, we add an extra row on top, an extra col-
umn on the left-hand side while adding two rows at the bottom and
two columns at the right-hand side. Moreover, we use two different
boundary functions in each dimension to emphasize the flexibility
obtained by using a compositional approach.

The pad primitive is defined to extend its input array by repeating
elements on each side. Since we represent a matrix as an array of
arrays, the elements which the pad primitive repeats are rows of the
given matrix, thus arrays itself. In the first step depicted in Figure 6,
the first row is added on top of the matrix and the last row is added
twice on the bottom of the matrix. By transposing the matrix, we con-
vert rows into columns and vice versa. By applying the pad primitive
again we pad the columns of the original matrix. Since both dimen-
sions are now padded we only need to transpose the matrix again to
restore the original orientation.

26 expressing stencil computations using high-level functional primitives

[a b c]
[d e f]
[g h i]

(map(
 map(transpose) ∘
 slide 2 1 ∘
 transpose) ∘
 slide 2 1)

[g h i]
[d e f]

[a b c]
[d e f]

map(
 map(transpose) ∘
 slide 2 1 ∘
 transpose)

[a b c]
[d e f]

(map(transpose) ∘
 slide 2 1 ∘
 transpose)

[a d]
[b e]
[c f]

(map(transpose) ∘
 slide 2 1)

[c f]
[b e]

[a d]
[b e]

map(transpose) [a d]
[b e]transpose

[a b]
[c d]
[c d]
[g h]

[b c]
[e f]
[e f]
[h i]

Figure 7: Using slide to create neighborhoods for a 2× 2 4-point stencil

To increase readability, we define a function pad2d which we use in
the following examples.

definition 2 .15: Let xs be an array of size m whose elements are arrays
of size n. Let top, bottom, left, right be positive integer values and b1
and b2 two boundary functions. The pad2d function is then defined as:

pad2d top bottom left right b1 b2
def
=

transpose ◦ pad left right b2 ◦
transpose ◦ pad top bottom b1

If top = bottom, left = right and b1 = b2, we also write

pad2d top left b1 xs

instead of

pad2d top top left left b1 b1 xs

Note that pad2d is a defined function composed of primitives which
allows us to avoid repetition instead of being a specialized built-in
primitive for higher dimensional data structures.

2.3.2 Creating Two Dimensional Neighborhoods Using Slide

In this section, we explain how we create two dimensional neighbor-
hoods using our high-level primitives. The creation of two dimen-
sional neighborhoods in a matrix is depicted in Figure 7. We start
in the top left corner. Similar to pad, the slide primitive works with
elements of its input array independent of their type. Since these ele-
ments are now arrays itself, slide creates windows of rows as depicted

2.3 multidimensional stencils 27

in the second step. After creating these windows, map is the next prim-
itive to be applied. Although map applies a function to every element,
we only depict the application to the first element for simplicity. In
the subsequent steps, slide is applied to the transposed elements to
gather neighboring columns. Finally, every element needs to be trans-
posed again to restore the original orientation. The final result is a
four dimensional array: a matrix which contains the two-dimensional
neighborhoods.

Again, we define a function slide2d which allows to omit repeating
this exact combination of high-level primitives:

definition 2 .16: Let xs be an array of size m whose elements are arrays
of size n. Let sizeX, stepX, sizeY , stepY be positive integer values. The
slide2d function is then defined as:

slide2d sizey stepy sizex stepx xs
def
=

map(map transpose ◦
slide sizex stepx ◦

transpose) ◦
slide sizey stepy

If sizex = sizey and stepx = stepy, we also write

slide2d sizex stepx xs

instead of

slide2d sizex stepx sizex stepx xs

2.3.3 Multidimensional Stencil Examples

Now that we examined how to reuse our high-level primitives for two
dimensional data structures by composing our high-level primitives,
we examine how to express real life stencil applications using our
high-level primitives. Again every example has the following struc-
ture:

map(map f)︸ ︷︷ ︸
apply computation in 2D

◦ slide2d ny sy nx sx︸ ︷︷ ︸
create 2D neighborhoods

◦ pad2d t b l r h︸ ︷︷ ︸
2D boundary handling

Higher dimensional stencil computations are expressed in a similar
fashion.

2.3.3.1 9-Point Jacobi

To begin with, consider a simple two-dimensional 9-point Jacobi sten-
cil. To express this stencil, we use the new functions slide2d and pad2d
and the mirror boundary condition

28 expressing stencil computations using high-level functional primitives

example 2 .9 (9-point jacobi):

9PointJacobi
def
= map(map f) ◦ slide2d 3 1 ◦ pad2d 1 1 mirror

where the stencil function f is defined as

f
def
= reduce (+) 0 ◦ join

Let us examine why we define the stencil function using a join as
the first primitive. Consider mapping the function to a single 9-point
neighborhood:

example 2 .10:

(reduce (+) 0 ◦ join)

a b c

d e f

g h i

= reduce (+) 0 [abcdefghi]

= [0+ a+ b+ c+ d+ e+ f+ g+ h+ i]

As shown in the previous example, flattening the neighborhood us-
ing join allows to accumulate all values using a single reduce primitive.
Another possibility would be to map a reduce onto every row and flat-
ten the result afterwards. However, this is a slightly more complex
stencil function computing the exact same result. Therefore, we flat-
ten multidimensional neighborhoods in all following examples.

2.3.3.2 Cellular Automaton

To emphasize that the high-level primitives might also be used to ex-
press non-convolution stencil computations, we express a well-known
cellular automaton example: Conway’s Game of Life. Every element of
a two dimensional grid can be in two states: It can either be alive,
represented by a 1, or it can be dead represented by a 0. In this exam-
ple, we express the B2S23 version of this application. In this version,
an element is born (its state changes from 0 to 1) if exactly two of its
direct neighbors including diagonals are alive. An element survives
if either two or three of its neighbors are alive. In all other cases the
state changes from 1 to 0 or stays 0.

example 2 .11 (game of life):

GameOfLife
def
= map(map evolution) ◦ slide2d 3 1 ◦ pad2d 1 1 mirror

where the evolution is defined as

evolution
def
= survive ◦ reduce (+) 0 ◦ join

and survive is defined as

survive x
def
=

1 if 1 < x < 4

0 otherwise

2.3 multidimensional stencils 29

This example emphasizes the flexibility of our functional approach
to express stencil computations. The stencil-function that is mapped
onto the neighborhoods is an arbitrary function which can compute
anything as long as its output is a single element. In this example we
showed how to express the famous Game of Life example but there
are many more non-convolution examples that are expressible using
our functional approach.

2.3.3.3 2D Convolution

In this section we define a 2d equivalent of the convolution1d func-
tion defined earlier. We start by defining the convolution operator ∗
in 2D as in already defined in [38] and a convolution2d function
similar to the convolution1d function defined in Section 2.2.3.3

definition 2 .17: Let Ω be an array of size m whose elements are arrays
of size n. Let rx and ry be positive integer values denoting the radius of the
stencil shape in X and Y dimension. Let u = 2rx+ 1 denote the width of the
stencil and v = 2ry+ 1 the height of the stencil. Let K be an array of size
u× v denoting the convolution kernel. Let −rx 6 i 6 rx and −ry 6 j 6 ry.
The convolution operator ∗ for 2D arrays is the defined as follows

(Ω ∗K)(x,y) =
∑
i

∑
j

Ω(x+ i,y+ j) ·K(i+ j · rx)

We express the convolution computation functionally using our
high-level primitives:

definition 2 .18: Ω, m, n, rx, ry, and K are defined as in Defini-
tion 2.17 Let b be a boundary function as defined in Section 2.2.2 Let
nx = 2rx + 1 denote the size of the stencil shape and ny = 2ry + 1 de-
note the size of the stencil shape.

convolution2d b K Ω = Ω ∗b K
def
=

(map(map (f K)) ◦ slide2d ny 1 nx 1 ◦ pad2d rx ry b) Ω

where

f K nbh = (reduce (+) 0 ◦ map (∗) ◦ zip) K (join nbh)

(3)

Note that we defined the convolution kernel to be a flattened one
dimensional array instead of a matrix. This has rather pragmatic rea-
sons and is not necessarily required. By using a flattened version
of the convolution kernel, we are able to flatten the neighborhoods
as well. This is done by applying the join primitive to the neighbor-
hoods nbh as depicted in the stencil function in Equation 3. Since
both, the neighborhoods and the convolution kernel, are one dimen-
sional now, we are able to apply reduce once. In the two dimensional
case, we would have to reduce each row separately and reduce the
temporary results. This way, the functional expression would only be
more complex while computing the same result.

30 expressing stencil computations using high-level functional primitives

...

...

... ...

m

n

n + 2rx

m + 2ry

nbh

K

(map(map (f K)) ∘
 slide2d ny 1 nx 1 ∘
 pad2d rx ry b)

(map(map (f K)) ∘
 slide2d ny 1 nx 1)

join(reduce (+) 0 ∘
 map (*) ∘
 zip)

K
nbh

(reduce (+) 0 ∘
 map (*) ∘
 zip)

output element

n

m nx

ny
(map(
 map (f K))

nbh

...output

Ω

Figure 8: Computation steps for a high-level expression describing a two
dimensional convolution

The computation of a two dimensional convolution is depicted in
Figure 8. The conceptual structure of the functional program has not
changed compared to the structure we identified in the introduction
of this section. This is emphasized by the use of the functions pad2d
and slide2d as depicted in Equation 3. As a first step, the input ma-
trix is padded with the appropriate rows and columns specified by
the boundary function b. Second, slide2d is used to create two dimen-
sional neighborhoods in the padded input matrix. Finally, the stencil
function fK is mapped onto every neighborhood. Since the input is a
matrix, thus two dimensional we need to use two map primitives to
apply the function to every neighborhood.

2.3.3.4 Gaussian Blur

A well-known example of a stencil computation (specifically a two
dimensional convolution) in image processing is the Gaussian Blur
filter, also known as Gaussian Smoothing. The gaussian blur image fil-
ter is usually applied as a pre-processing stage in computer vision
algorithms to reduce noise and detail. An example of applying the
gaussian blur to reduce noise of an image is depicted in Figure 9.
Since it is an image filter, it is usually applied to two dimensional
data structures. The gaussian blur uses a gaussian function to com-
pute the convolution kernel that is applied to the pixel values of the
input image to compute a weighted average of a neighborhood. Thus,
the convolution kernel for the gaussian blur application is defined as
follows:

definition 2 .19: Let rx and ry denote the radius of the stencil in both
dimensions. Let n = 2rx+ 1 and −rx 6 i 6 rx and −ry 6 j 6 ry.

Kgauss(i+n ∗ j) =
1

2πσ2
e
− i2+j2

2σ2

2.3 multidimensional stencils 31

(a) Original image (b) Image after applying the Gaussian-
Blur filter

Figure 9: Applying the Gaussian Blur filter to the Lena image often used as
an example in image processing

for a given standard derivation σ used in the gaussian function.

Using a standard derivation σ = 1, a 3× 3 gaussian convolution
kernel, which we use in the flattened one dimensional version as de-
scribed in the beginning of this chapter, looks like:0.077847 0.123317 0.077847

0.123317 0.195346 0.123317

0.077847 0.123317 0.077847

The gaussian blur image filter using the clamp boundary condition

can now be expressed using our convolution2d function that utilizes
our high-level primitives as follows:

definition 2 .20:

gaussianBlur Ω
def
= convolution2d clamp Kgauss Ω

2.3.3.5 17× 17 Convolution

As a last example, we define a generic 17× 17 convolution in terms
of our convolution2d function. We specifically focus on optimizing
this example in the following chapter. This stencil computation can
be used to apply a gaussian blur using a bigger convolution kernel
or any other arbitrary convolution.

example 2 .12 (17 × 17 convolution): Let Ω be an arbitrary two
dimensional grid. Let K be an array of size 17 · 17 = 289 with elements
ki, 0 < i 6 289 denoting the convolution kernel. Let b be an arbitrary
boundary function. A 17× 17 convolution is then expressed as follows:

convolution2d b K Ω =

32 expressing stencil computations using high-level functional primitives

(map(map (f K)) ◦ slide2d 17 1 ◦ pad2d 8 8 b) Ω (4)

where

f K nbh = (reduce (+) 0 ◦ map (∗) ◦ zip) (join nbh) K

This is the high-level expression which we use in the following
chapters as a running example.

2.4 summary

In this chapter, we identified the fundamental parts of stencil com-
putations and explained how to express them using high-level prim-
itives by defining two new primitives slide and pad. Using several
examples for one and multidimensional stencil computations, we ex-
plained how to apply and combine these high-level primitives to ex-
press stencil computations in a purely functional manner. Further-
more we defined several functions composed of built-in primitives
(for example slide2d, convolution1d, and more), which allowed to omit
repeating specific combinations of primitives. Moreover, these zero-
cost abstractions raised the abstraction level making the usage of our
high-level primitives as expressive and easy to use as existing skele-
ton libraries or domain specific languages.

3
O P T I M I Z I N G S T E N C I L C O M P U TAT I O N S U S I N G
L O W- L E V E L P R I M I T I V E S

In this chapter, we analyze how to optimize stencil codes for GPUs
using well-known optimizations and formalize them using our func-
tional approach. By formalizing these optimizations and encoding
them in specific combinations of our low-level primitives, we are able
to apply them systematically rather than ad hoc. We are also able
to reason about the correctness of optimizations using semantics pre-
serving rewrite rules. Furthermore, we evaluate handwritten OpenCL
kernels that each implement an optimization we observe in this chap-
ter to emphasize the importance of optimizing stencil codes in order
to gain high performance kernels.

3.1 low-level opencl-specific functional primitives

In the following, we formally define a subset of the already existing
low-level primitives which we use in the course of this thesis to ex-
press optimizations for stencil computations. To do this, we use the
definitions given in [57]:

parallel map Low-level OpenCL-specific map primitives describe
different ways to exploit OpenCL’s thread-level parallelism. All
primitives map computations in different ways to the hardware.
The semantics and types of all primitives are the same as of the
high-level map primitives introduced in Section 2.2:

• The mapGlobal primitive assigns work all work-items inde-
pendent of work-groups.

• The mapWorkgroup primitive assigns work to a work-group
and the mapLocal primitive is used to assign work to work-
items inside a work-group. Therefore, the mapLocal primi-
tive can only be used nested inside a mapWorkgroup primi-
tive.

Since OpenCL supports thread hierarchies in three dimension
we write mapGlobal0 to assign work to global work-items in
the first dimension or mapWorkgroup1 to assign work to work-
groups in the second dimension respectively.

sequential map and reduce The mapSeq and reduceSeq perform
a sequential map and reduction using a single work-item. The
semantics and type of the mapSeq primitive is the same as of
the high-level map primitive. Since we do not require an associa-
tive and commutative operator for the sequential reduction any

33

34 optimizing stencil computations using low-level primitives

longer, we can relax the requirements for the reduceSeq primitive
and define it as in [57]:

definition 3 .1: Let xs be an array of size n with elements xi
where 0 < i 6 n. Let ⊕ be a binary customizing operator with the
identity element id⊕. The reduceSeq primitive is then defined as fol-
lows:

reduceSeq (⊕) id⊕ [x1, x2, . . . , xn]
def
= [(. . . ((id⊕⊕x1)⊕x2) · · ·⊕xn)]

The type of reduceSeq is defined as follows:

reduceSeq : (α→ β→ α)→ α→ [β]n → [α]1

tolocal and toglobal The toLocal and toGlobal primitives allow
to exploit OpenCL’s memory hierarchy. Both primitives specify
where the result of a given function is stored. In case of the
toLocal primitive, the result is stored in the fast on-chip local
memory. In case of the toGlobal primitive, the result is stored in
the slower off-chip global memory. First, we define the toLocal
primitive:

definition 3 .2: Let f be a function. The toLocal primitive is then
defined as follows:

toLocal f
def
= f ′, where f ′ x

def
= f x, ∀x and f ′ is guaranteed to store

its result in local memory

The type toLocal is defined as follows:

toLocal : (α→ β)→ (α→ β)

The definition for the toGlobal primitive is correspondent:

definition 3 .3: Let f be a function. The toGlobal primitive is then
defined as follows:

toGlobal f
def
= f ′, where f ′ x

def
= f x, ∀x and f ′ is guaranteed to store

its result in global memory

The type of toGlobal is defined as follows:

toGlobal : (α→ β)→ (α→ β)

3.2 optimizing stencil convolution

Convolutions are a class of stencil computations found in many appli-
cations like digital signal processing, acoustics, electrical engineering,
physics or artificial intelligence. Because of its broad use, we decide
to specifically examine how this subclass of stencil computations is

3.2 optimizing stencil convolution 35

optimized in order to gain high performance on GPUs. Nvidia pub-
lished a guide [51] on how to optimize convolution computations. We
use this as an orientation for systematically optimizing our convolu-
tion expression. We evaluate handwritten OpenCL kernels that each
implement an optimization to observe the differences in performance
after applying a specific optimization. These kernels are shown in Ap-
pendix A.1. To measure performance, we executed each kernel 100

times on an Nvidia Kepler K20c (Compute Capability 3.5) using the
Nvidia OpenCL 1.2 CUDA 8.0.20 platform and the driver version
361.42. We compute the 17× 17 convolution using 4096× 4096 input
elements and the clamp boundary handling. We present the median
of the kernel runtimes omitting data transfer times. The example in
this chapter shows that performance increases by a factor of 41. This
shows the importance of optimizations and motivates us to represent
these optimizations in our system.

Although we are investigating the optimization of a convolution
example, most of the optimizations introduced in the following can
be applied to a broader class of stencil computations. However, if an
optimization is specific for this particular example we explicitly indi-
cate this and explain why it is not generally applicable. Otherwise, all
following optimizations are applicable to every stencil computation
that can be expressed using the high-level primitives introduced in
the previous chapter.

We begin the following sections with explaining and evaluating the
performance benefits of a specific optimization using the handwrit-
ten OpenCL kernels. Afterwards, we introduce how to functionally
express these optimizations using LIFT’s IL.

3.2.1 Naive Version

performance To obtain a performance baseline, we measure the
runtime of a naive handwritten 17 × 17 convolution kernel shown
in Appendix A.1 in Listing 24. This kernel does not implement any
optimization. Every global work-item sequentially computes a single
output element. It takes 123.652 ms to execute and achieves a band-
width of 0.543 GB/s. We use these results throughout this chapter to
compare if the discussed optimizations indeed improve performance.
In the following we examine how to express this naive version using
low-level primitives.

36 optimizing stencil computations using low-level primitives

1 conv = λ b weights input .

2 (map(map(λ nbh .

3 (reduce (+) 0 ◦ map (∗) ◦ zip) (jo in nbh) weights)) ◦
4 sl ide2d 17 1 ◦ pad2d 8 8 b) input

Listing 1: High level expression for a 17× 17 convolution

1 conv = λ b weights input .

2 (mapGlobal1(mapGlobal0(λ nbh .

3 (reduceSeq (+) 0 ◦ mapSeq (∗) ◦ zip) (jo in nbh) weights)) ◦
4 sl ide2d 17 1 ◦ pad2d 8 8 b) input

Listing 2: Naive mapping of a 17× 17 convolution to low-level primitves

representation in lift We examine the high-level expression
for the 17× 17 convolution example introduced in Section 2.3.3.5:

convolution2d b K Ω =

(map(map (f K)) ◦ slide2d 17 1 ◦ pad2d 8 8 b) Ω

where

f K nbh = (reduce (+) 0 ◦ map (∗) ◦ zip) (join nbh) K

In the previous chapter, we did not inline the stencil function to in-
crease readability and emphasize the structure of a functional expres-
sion for stencil computations. In this chapter however, we write our
functional programs as shown in Listing 1. This way, the functional
program is depicted as one complete expression.

A naive and straightforward way to lower the high-level expression
into an expression using low-level primitives is to replace the map and
reduce primitives with their low-level parallel or sequential versions
as shown in Listing 2, using the rewrite rules we introduce in the
following. The slide and pad primitives are used in the high-level ex-
pressions of the previous chapter as well as the low-level expression
used in this chapter. This is because equivalent to split and join they
only modify the type and the structure of the data without describ-
ing computation that need to be parallelized or executed sequentially.
Thus, they define how to access the data and not how to use the el-
ements to compute the results. These primitives are also called data
layout primitives. This enables us to reuse them in the exact same way
in the low-level expressions without introducing low-level versions
of these primitives.

The computation described by this expression is illustrated in Fig-
ure 10. Since input is a two dimensional matrix, we structure the
global work-items two dimensionally using the low level primitives
mapGlobal0 and mapGlobal1 in line 2 of Listing 2. In this version, ev-
ery global work-item is responsible for computing one element of the
output matrix. Thus, every work-item accesses elements of the input

3.2 optimizing stencil convolution 37

global work-items x

global
work-items y

17

17

nbh

weights

sequential ⊕

input output

Figure 10: Naive computation of a 17× 17 convolution using global work-
items to sequentially compute a single output element

matrix in global memory to compute a single output element sequen-
tially.

The transformation from the original high-level expression to the
naive low-level expression is semantics preserving. To rewrite the
high-level expression, we use two rewrite rules already introduced
and proved correct in [57].

rewrite rule 1 (low-level opencl-specific map rule):

map → mapWorkgroup | mapLocal

| mapGlobal | mapSeq
(5)

rewrite rule 2 (low-level reduce rule):

reduce (⊕) id⊕ → reduceSeq (⊕) id⊕ (6)

In the following sections, we introduce optimizations to utilize the
fast local memory of a GPU using our functional primitives.

3.2.2 Applying Tiling to Utilize Local Memory

In order to use the fast local memory of a GPU we need to divide the
input in several tiles. Afterwards, a tile is assigned to a work-group
which copies its tile to local memory and computes several output el-
ements using local work-items. However, classical tiling approaches,
for example used in matrix-matrix multiplication [45, 71], are not ap-
plicable in stencil computations. In these tiling approaches, the input
is divided into fully separated tiles. This can easily be expressed us-
ing the split primitive as demonstrated in [53]. However, in stencil
computations, the computation of a single output element requires

38 optimizing stencil computations using low-level primitives

Figure 11: Performance of a naive 17×17 convolution compared to a version
that applies overlapped tiling with and without idle work-items

access to surrounding elements. Thus, tiles in stencil computations
have to overlap. This optimization is well-known and referred to as
Overlapped Tiling [25, 27, 73].

performance The performance of handwritten kernels which
implement overlapped tiling and use local memory compared to the
performance of the naive version is visualized in Figure 11. The ker-
nels evaluated are shown in shown in Appendix A.1 in Listing 25 and
Listing 26. Although both kernels apply overlapped tiling and use the
fast local memory, the first kernel is significantly slower compared to
the naive version. This is because in this version, the work-groups
are exactly as big as the overlapping tiles which results in idle work-
items during the computations of output elements as we explain later
in this chapter. The second version avoids idle threads during compu-
tation and achieves a speedup of 1,78 compared to the naive version.

representation in lift In order to achieve a performance ben-
efit using overlapped tiling, we need to examine how to express
it functionally. More specifically, we examine the following points
which motivate the structure of the next sections:

1. divide the input into overlapping tiles (Section 3.2.2.1)

2. assign a tile to a work-group and copy it to local memory (Sec-
tion 3.2.2.2)

3. avoid idle threads during computation of output elements (Sec-
tion 3.2.2.3)

We discuss each of these points in the following sections and start
by describing how to express overlapped tiling for one and two di-
mensional inputs.

3.2 optimizing stencil convolution 39

1 3PointJacobi = λ b input . (jo in ◦
2 map(λ nbh . reduce (+) 0 nbh) ◦
3 s l id e 3 1 ◦ pad 1 1 b) input

Listing 3: Low-level expression for a 3-point Jacobi example

tile

output

tile tile

overlap

output

input

Figure 12: Overlapped Tiling for a 3-point stencil in one dimension

3.2.2.1 Overlapped Tiling

applying overlapped tiling in lift in one dimension To
explain the concept of overlapped tiling and how we realize it using
our functional primitives, we first consider a one dimensional exam-
ple before we explain how to apply this to the 17× 17 convolution
example. Consider the 3-point Jacobi example shown in Listing 3. In
the course of this section we systematically rewrite this high-level
expression to a low-level expression that applies overlapped tiling.
Eventually, we want every work-group to compute multiple (e. g. 3)
elements using its local work-items. We can not simply divide the in-
put using (split 3). Instead, each tile needs to contain five elements in
order to be able to compute three output elements as shown on the
left side of Figure 12. If we divide the input into multiple tiles, these
tiles overlap as shown on the right side of Figure 12. Thus, they share
certain elements depending on the shape of the stencil.

We reuse the slide primitive to create overlapping tiles. Afterwards,
we use slide again to create the original neighborhoods in each tile. To

...

...

slide 5 3

input

array of
overlapping tiles

array of tiles
containing
neighborhoods

output

map (slide 3 1)

Figure 13: Expressing Overlapped Tiling using slide: Applying slide to the
input creates overlapping tiles. Applying slide to every tile creates
the required neighborhoods

40 optimizing stencil computations using low-level primitives

1 3PointJacobi = λ b input . (jo in ◦
2 mapWorkgroup(λ tile .

3 (mapLocal(λ nbh . reduceSeq (+) 0 nbh) ◦
4 s l id e 3 1) tile) ◦
5 s l id e 5 3 ◦ pad 1 1 b) input

Listing 4: Low-level expression for a 3-point Jacobi applying Overlapped
Tiling

create the tiles depicted in Figure 12, we need to use the slide primitive
with a size of five and a step of three. By sliding twice, first the tiles
are created and then the neighborhoods inside the tiles are created,
as shown in Figure 13. The first slide creates an array of tiles. Map-
ping the second slide onto each tile creates neighborhoods in each tile.
The functional program expressing the 3-point Jacobi computation
using overlapped tiling is shown in Listing 4. We use λ-functions to
name the arguments of each function. We use the mapWorkgroup and
the mapLocal primitives to assign each tile to a work-group (line 2 in
Listing 4). Inside every work-group, each local work-item is responsi-
ble for computing a single output element for a given neighborhood
(line 3).

systematical rewriting to apply overlapped tiling ugly
Now we show how to transform the Listing 3 to Listing 4 using prov-
ably correct, hence semantics preserving, rewrite rules. We do this by
providing the following overlapped tiling rule.

rewrite rule 3 (overlapped tiling rule):

slide n s = join ◦map(slide n s) ◦ slide u v (7)

This rule states that the exact same elements that are grouped
together using slide with parameters n and s end up in the same
neighborhoods when using slide with the tiling parameters u and v
first while sliding afterwards using the original parameters n and s
again. Obviously, n and s as well as u and v need to be valid param-
eters for the slide primitive. Thus, applied to an array of length m,
m− n+ s mod s needs to equal 0. The same needs to be true for u
and v. The correctness proof for the overlapped tiling rule is given
in Appendix A.2, Proof A.2.1. To be able to systematically rewrite
the high-level 3-point Jacobi to a low-level version that applies over-
lapped tiling we need to provide one more rewrite rule:

rewrite rule 4 (map-join reorder rule):

map f ◦ join = join ◦map(map f) (8)

The proof for this rule is given in Appendix A.2, Proof A.2.2. Now
we are able to systematically rewrite the high-level stencil expression

3.2 optimizing stencil convolution 41

to an equivalent low-level version that applies overlapped tiling. Be-
sides the two previously introduced rewrite rule we use the following
rule already introduced and proved correct in [57]:

rewrite rule 5 (map fusion rule):

map f ◦map g = map(f ◦ g)

example 3 .1 (applying overlapped tiling (1d)):

map(reduce (+) 0) ◦ slide 3 1 ◦ pad 1 1 b

(using the overlapped tiling rule - Rewrite Rule 3)

map(reduce (+) 0) ◦ join ◦map(slide 3 1) ◦ slide 5 3 ◦ pad 1 1 b

(using the map-join reorder rule - Rewrite Rule 4)

join ◦map(map(reduce (+) 0)) ◦
map(slide 3 1) ◦ slide 5 3 ◦ pad 1 1 b

(using the map-fusion rule - Rewrite Rule 5)

join ◦map(map(reduce (+) 0) ◦ slide 3 1) ◦
slide 5 3 ◦ pad 1 1 b

(using λ-functions to name arguments)

join ◦map(λ tile.

(map(λ nbh . reduce (+) 0 nbh) ◦ slide 3 1) tile) ◦
slide 5 3 ◦ pad 1 1 b

(using the low-level map and reduce rules - Rewrite Rules 1 and 2)

join ◦mapWorkgroup(λ tile.

(mapLocal(λ nbh . reduceSeq (+) 0 nbh) ◦ slide 3 1) tile) ◦
slide 5 3 ◦ pad 1 1 b

This is exactly the expression discussed previously and shown in
Listing 4. By applying simple rewrite rules, we were able to system-
atically rewrite the simple 3-point Jacobi example to an expression
which applies overlapped tiling. The original and the resulting ex-
pression have the same semantics since we only applied semantics
preserving rewrite rules.

In the following section, we examine how to express overlapped
tiling in two dimensions and apply that optimization for the 17× 17
convolution example.

42 optimizing stencil computations using low-level primitives

...

...

... ...

(map(map
 (slide2d size' step')) ∘
 slide2d size step) input

input
overlapping

�les

neighborhoods

Figure 14: Applying overlapped tiling in two dimensions

16

16

8

8

88

halo elements

output
elements

Figure 15: Tile shape for a 17× 17 convolution

applying overlapped tiling in lift in two dimensions

Given the previous definition of overlapped tiling using low-level
primitives, applying this optimization in 2D is straightforward. In-
stead of using slide twice, we are using the function slide2d twice. Us-
ing slide2d with the tiling parameters creates overlapping tiles in two
dimensions. Mapping the second slide2d creates the original neighbor-
hoods inside each tile as depicted in Figure 14.

Now consider we want every work-group to compute 16× 16 out-
put elements in our 2D convolution example. The shape of the tile
each work-group processes is illustrated in Figure 15. Since the ra-
dius of the convolution stencil equals eight, we need to consider eight
extra elements on both sides of each dimension. These elements are
also called halo-elements. The resulting tile therefore contains 32× 32
elements and each work-group is able to compute 16× 16 output ele-
ments.

The expression that introduces overlapped tiling to the convolution
example is depicted in Listing 5.

Changing the shape of the tile is now just a matter of changing the
numerical parameters for the first slide2d function in line 11.

In the previous sections, we introduced how to divide the input
into several overlapping tiles. In order to achieve the speedup ob-
served in the beginning Section 3.2.2, we need to examine how to
copy these tiles to the fast local memory.

3.2.2.2 Utilizing Local Memory

Now that we divided the input into overlapping tiles, we are able to
use the fast local memory to accelerate our computation. Every GPU

3.2 optimizing stencil convolution 43

1 conv = λ b weights input .

2 // assign tiles to work-groups

3 (mapWorkgroup1(mapWorkgroup0(λ tile .

4 // assign neighborhoods to local work-items

5 (mapLocal1(mapLocal0(λ nbh .

6 // stencil function

7 (reduceSeq (+) 0 ◦ mapSeq (∗) ◦ zip) (jo in nbh) weights)) ◦
8 // create neighborhoods in each tile

9 sl ide2d 17 1) tile)) ◦
10 // create overlapping tiles

11 sl ide2d 32 16 ◦ pad2d 8 8 b) input

Listing 5: Low-level expression for a 17× 17 convolution applying Over-
lapped Tiling

contains a small amount of fast on-chip memory often referred to as
shared or local memory which is the term we use in the following.

In order to utilize local memory, we use the toLocal primitive which
takes a function as an argument and guarantees that its output is
stored in local memory. We apply the identity function, nested inside
the toLocal primitive, to all elements of the tile as shown in Equation 9,
to copy an entire tile into local memory.

toLocal(mapLocal1(mapLocal0 id)) tile (9)

By applying the identity to every element, the shape of the tile re-
mains unchanged. The result is guaranteed to be stored in local mem-
ory because the computation is nested inside a toLocal primitive. Ev-
ery computation following the expression works with elements resid-
ing in local memory. To store the output element in global memory
again, we apply the toGlobal primitive in a similar fashion:

toGlobal(mapSeq id) element (10)

Every work-item executes this expression after computing the output
element in local memory. This ensures that every work-item eventu-
ally copies its result back to global memory. The complete expression
describing the 17× 17 convolution using overlapping tiles and local
memory is shown in Listing 6.

To systematically rewrite this expression we need to introduce an-
other two rewrite rules already discussed in [57]:

rewrite rule 6 (identity):

f→ f ◦map id | map id ◦ f

rewrite rule 7 (local and global memory rule):

mapLocal f→ toGlobal(mapLocal f) | toGlobal(mapSeq f)

mapLocal f→ toLocal(mapLocal f) | toLocal(mapSeq f)

44 optimizing stencil computations using low-level primitives

1 conv = λ b input weights .

2 // assign tiles to work-groups

3 (mapWorkgroup1(mapWorkgroup0(λ tile .

4 // assign neighborhoods to local work-items

5 (mapLocal1(mapLocal0(λ nbh .

6 // store result in global memory

7 (toGlobal(mapSeq id) ◦
8 // stencil function

9 reduceSeq (+) 0 ◦ mapSeq (∗) ◦ zip) (jo in nbh) weights)) ◦
10 // create neighborhoods in each tile

11 sl ide2d 17 1 ◦
12 // copy tile to local memory

13 toLocal(mapLocal1(mapLocal0 id))) tile)) ◦
14 // create overlapping tiles

15 sl ide2d 32 16 ◦ pad2d 8 8 b) input

Listing 6: Low-level expression for a 17× 17 Convolution applying Over-
lapped Tiling and using local memory

1 conv = λ b weights input .

2 mapWorkgroup1(mapWorkgroup0(λ tile .

3 (mapLocal1(mapLocal0(λ nbh .

4 (toGlobal(mapSeq id) ◦
5 // ...

Listing 7: Functionally assigning work to work-groups and work-items
using low-level primitives

Listing 5 is then rewritten to Listing 6 as shown in Appendix A.3.
Again, all rules applied are provably semantics preserving which
causes the rewritten expression which uses local memory to compute
the same result as the original expression.

It obviously would be more intuitive to use the toLocal and toGlobal
primitives as in the following expressions:

toLocal(slide tilesize tilestep) input

toGlobal(stencilFunction)

However, this is currently not possible in the practical implementa-
tion of LIFT, but should be possible in future versions of this work.

Dividing the input into overlapping tiles and loading them to lo-
cal memory is not necessarily achieving a performance benefit. As
observed in the beginning of Section 3.2.2, having idle work-items in-
side a work-group during the computation of output elements causes
a significant performance drawback. Therefore, we examine how to
avoid idle-work items in the next section.

3.2.2.3 Avoiding Idle Work-Items

An important factor for performance is how many work-items load
data to local memory and how many work-items are active during

3.2 optimizing stencil convolution 45

the computation of output elements. Note that none of our expres-
sions considers the amount of work-items and work-groups started
for execution. Instead we use the low-level primitives mapWorkgroup
and mapLocal shown in Listing 7 to assign work to all existing work-
items. In the previous section we assumed work-groups to be as big
as the tile size such that every work-item loads exactly one element
to local memory. In this case the mapLocal0 and mapLocal1 primitives
map each work-item to exactly one element of the tile. However, after
loading to local memory, only a quarter of the work-items are com-
puting an output element which forces most of the work-items of this
work-group (exactly 768 of 1024 in the previous example) to be idle
during computation.

To address this, we could also launch work-groups that contain
less work-items which leads to multiple loads per work-item. For
example, every work-item loading four elements to local memory. Af-
terwards, all work-items of this work-group compute an output ele-
ments without any idle work-items in a work-group. This optimiza-
tion is independent of our expression but starting fewer work-items
per work-group changes the distribution of work.

Applying all the optimization discussed in the previous sections
leads to the speedup of 1.78 as discussed in the beginning of Sec-
tion 3.2.2. These results emphasize the fact that the performance of
OpenCL programs is highly sensitive to applied optimizations includ-
ing its parameters like tile sizes. Choosing the wrong parameters or
configurations for a specific optimization leads to a significant perfor-
mance drawback. Therefore, it is highly desirable to specify means
to systematically apply optimizations like tiling or the usage of local
memory by using a formal system instead of applying them using a
trial and error approach.

3.2.3 Increasing Efficiency by Separating Convolution

Sometimes, the convolution computation can be split into two sepa-
rate computations. Specifically, a row and a column convolution that
are applied consecutively. The computation using two separated con-
volutions is shown in Figure 16. We first apply a row convolution and
write an intermediate result to global memory, shown on the left side.
Afterwards, we apply the column convolution using the intermedi-
ate result, shown on the right side. This optimization is not gener-
ally applicable for every stencil application. However, it significantly
increases the performance for convolution computations when appli-
cable as shown in Figure 17 (using a logarithmic scale). We examine
three different versions of separated convolution. The first version is
only separating the convolution into a row and a column convolution
without implementing overlapped tiling or the usage of local mem-
ory.

46 optimizing stencil computations using low-level primitives

input intermediate
result

output

row convolution
kernel

neighborhood

neigh-
borhood

conlumn
convolution
kernel

row convolution column convolution

Figure 16: Illustration of a two dimensional convolution using separated
convolution kernels

Figure 17: Performance of an improved tiled and separated 17×17 convolu-
tion compared to convolutions implementing other optimizations

performance The kernels implementing the row and column
convolution are shown in Appendix A.1 in Listing 27 and Listing 28.
Separating the convolution like this results in a speedup of 8.89 com-
pared to the previous version and to a speedup of 15.84 compared
to the naive version. Reintroducing tiling and local memory does not
necessarily improve the performance. Choosing the wrong tile sizes
leads to a significant performance drawback. The kernels implement-
ing the tiled row and column convolution are shown in Appendix A.1
in Listing 29 and Listing 30. However, choosing appropriate param-
eters for all optimizations, we gain a speedup of 38.41 compared to
the naive version. The kernels implementing the improved tiled row
and column convolution are shown in Appendix A.1 in Listing 31

and Listing 32. These numbers emphasize that separating the convo-
lution significantly improves the performance and should always be
applied if possible.

3.2 optimizing stencil convolution 47

1 conv = λ b weightsX weightsY input .

2 (convColumn b weightsY ◦ convRow b weightsX) input

3

4 convRow = λ b weights:[float]17 input:[[float]n]m .

5 (mapGlobal1(mapGlobal0(λ nbh:[[float]17]1 .

6 (reduceSeq (+) 0 ◦ mapSeq (∗) ◦ zip) (jo in nbh) weights)) ◦
7 sl ide2d 1 1 17 1 ◦ pad2d 0 0 8 8 b) input

8

9 convColumn = λ b weights:[float]17 input:[[float]n]m .

10 (mapGlobal1(mapGlobal0(λ nbh:[[float]1]17 .

11 (reduceSeq (+) 0 ◦ mapSeq (∗) ◦ zip) (jo in nbh) weights)) ◦
12 sl ide2d 17 1 1 1 ◦ pad2d 8 8 0 0 b) input

Listing 8: 17× 17 convolution separated into a row and column convolu-
tion

representation in lift Separating convolutions into a row and
column convolution (also called X and Y convolution) is beneficial
because of two reasons: First, it reduces the amount of operations re-
quired to compute a single output element. Depending on the size
of the convolution kernel, computing a single output is costly. For
a 17× 17 convolution, it takes 289 multiplications and additions to
compute a single output element. If we can separate the convolution
into a 17× 1 and a 1× 17 convolution, we only need 17+ 17 = 34 mul-
tiplications and additions to compute the same output element. This
reduces the amount of operations required by a factor of 8.5. Second,
it allows a better utilization of the limited local memory when using
tiling.

In the following, we examine how to express this optimization in
LIFT’s IL by discussing how to

1. functionally express a separated convolution (Section 3.2.3.1)

2. reintroduce overlapped tiling and local memory (Section 3.2.3.2)

3. improve the tile sizes for separated convolutions (Section 3.2.3.3)

We start by examining how to express a separated convolution in
its simplest form using functional primitives. Thus, without tiling and
without using local memory. Afterwards, we proof that this separa-
tion is valid given a separable convolution kernel. Then, we examine
different ways to use overlapped tiling on separated convolution and
explain more advanced optimizations.

3.2.3.1 Simple Separation

A separated convolution that is composed of a row convolution and
a column convolution is shown in Listing 8 using low-level primi-
tives. The separation is naturally expressed using function composi-
tion (line 2). In this version, every global work-item computes a single

48 optimizing stencil computations using low-level primitives

output element and accesses global memory. Note that we first apply
convRow which writes its intermediate result into global memory.
convColumn uses this intermediate result to compute the result of
the convolution. Since there is no way to globally synchronize work-
groups, convRow and convColumn need to be executed as two sep-
arate kernels that are executed consecutively on the GPU. This way,
we ensure that the row convolution has finished before we use the
results in the column convolution. Therefore, we need to generate a
kernel for both convolution functions (lines 4 and 9).

Both functions are similar to the naive versions introduced in Sec-
tion 3.2.1. In fact, they only differ in numerical parameter for the
pad2d and slide2d functions. This is because from a functional per-
spective only the shape of the tiles, neighborhoods and convolution
kernel changed. Whereas the computation performed, a convolution
computation, is still the same. The change from conventional 2D con-
volution to row and column convolution leads to the changes in the
pad2d and slide2d functions that create the neighborhoods according
to the stencil shape. Note that we use slide2d and pad2d as a conve-
nient way to create the 17× 1 neighborhoods for the row convolution
(line 7) and the 1×17 neighborhoods for the column convolution (line
12). It is convenient because we only change the parameters instead
of changing the composition of map, slide and transpose to create the
row and column neighborhoods. Although one dimension equals 1 in
each neighborhood, slide2d creates matrices in both cases which are
flattened as before using join in lines 6 and 11.

Now we proof mathematically that convolutions using specific con-
volution kernels can be separated into a row and column convolution:
For completeness we repeat the definitions for one and two dimen-
sional convolution from Sections 2.2.3.3 and 2.3.3.3:

definition 3 .4 (convolution): Let Ω be an array of size n whose
elements are arrays of size m. Let rx and ry be positive integer values denot-
ing the radius of the stencil shape in X and Y dimension. Let u = 2rx+ 1

denote the width of the stencil in X dimension and v = 2ry+ 1 the height
of the stencil in Y dimension. Let K be an array of size u× v denoting the
convolution kernel. Let −rx 6 i 6 rx and −ry 6 j 6 ry . One dimensional
convolution is then defined as follows:

(Ω ∗K)(x) =
rx∑

i=−rx

Ω(x+ i) ·K(i) (11)

The convolution operator ∗ for 2D arrays is the defined as follows

(Ω ∗K)(x,y) =
∑
i

∑
j

Ω(x+ i,y+ i) ·K(i+ j · rx)

which equals

(Ω ∗K)(x,y) =
∑
i

∑
j

Ω(x+ i,y+ i) ·K(i, j) (12)

3.2 optimizing stencil convolution 49

(a) Original image (b) Image after applying the Sobel
edge detection filter

Figure 18: Applying the Sobel edge detection filter to the Lena image

if we assume that K is a two dimensional array of size (2rx+ 1)× (2ry+ 1)

again.

proof 3 .2 .1: Since multiplication is commutative, we can rewrite Equa-
tion 12 to the following equation:

(Ω ∗K)(x,y) =
∑
i

∑
j

K(i, j) ·Ω(x+ i,y+ i)

If the u× v matrix K can be decomposed into a u× 1 matrix Kx and a 1× v
matrix Ky such that:

K(i, j) = Ky(i) ∗Kx(j) (13)

we call this matrix separable.

(Ω ∗K)(x,y) =
∑
i

∑
j

Kx(i) ·Ky(j) ·Ω(x+ i,y+ i)

=(Ω ∗K)(x,y) =
∑
j

Ky(j) ·

(∑
i

Kx(i) ·Ω(x+ i,y+ j)

)

This shows that it is valid to first perform the convolution in X dimension
using Kx and do the column convolution afterwards using Ky, if K is sepa-
rable.

The key property that allows to separate the convolution into two
parts is given in Equation 13. To understand this property we look
at a well-known example of a separable convolution kernel used in
image processing. The Sobel Edge Detection Filter [56] is a convolution
operation frequently used in image processing algorithms. It uses two
3× 3 convolution kernels to detect vertical and horizontal edges in a
given picture as shown in Figure 18. Since both kernels are separable,
we only use one of them to give an example for the property given in
Equation 13:

50 optimizing stencil computations using low-level primitives

example 3 .2:−1 0 1

−2 0 2

−1 0 1

 =

12
1

 · [−1 0 1

]

In the remainder of this section we assume that the convolution
kernel K is separable.

The applicability of this optimization depends on the values of
the convolution kernel. Since we are unable to detect the separability
property of a convolution kernel automatically in the current version,
we provide a high-level function that allows to specify a column and
a row convolution kernel. This allows the programmer to indicate
that the convolution can be separated:

definition 3 .5: Let Ω be an array of size m whose elements are arrays
of size n. Let b be a boundary function as defined in Section 2.2.2 Let rx and
ry be positive integer values. Let nx = 2rx+ 1 denote the size of the stencil
shape in X dimension and ny = 2ry+ 1 denote the size of the stencil shape
in Y dimension. Let Kx be an array of size nx and Ky be an array of size
ny. The separableConvolution2d function is then defined as:

separableConvolution2d b Kx Ky Ω
def
=

(convColumn b Ky ◦ convRow b Kx) Ω
where

convRow b Kx =

map(map (f Kx)) ◦ slide2d 1 1 nx 1 ◦ pad2d rx rx 0 0 b)

and

convColumn b Ky =

map(map (f Ky)) ◦ slide2d ny 1 1 1 ◦ pad2d 0 0 ry ry b)

and

f K nbh = (reduce (+) 0 ◦ map (∗) ◦ zip) (join nbh) K

(14)

Now we defined means to express separated convolutions. In the
next sections, we reintroduce tiling and discuss how to improve tiling
for separated convolution computations.

3.2.3.2 Tiling Separated Convolution

In the previous section we described how to use the separation of
the convolution computation to reduce the amount of operations re-
quired to compute a single output element. In this section we rein-
troduce overlapped tiling and local memory usage to the separated
convolution computation. To rewrite the simply separated convolu-
tion expression introduced in the previous chapter, to an expression
that uses tiling and local memory eventually, the same techniques are
applied as in the non-separated convolution. Therefore, we do not

3.2 optimizing stencil convolution 51

halo elements

output
elements

tile
size

Y

tile size X

tile size X

tile
size

Y

tile
size

Y

tile size X

2D convolution tile row convolution tile

column
convolution

tile

Figure 19: Comparison of tiles for convolutions in one and two dimensions

overlap

padded input

8

Row convolution Column convolution

padded input
8

overlap

row tile

88 128

1

8

8

64

1

column
tile

Figure 20: Arrangement of overlapping tiles in separate convolution

repeat the formal rewrites for these optimizations in the following
sections again.

Separating the convolution computation into a row and a column
convolution reduces the amount of halo elements when loading a tile
into the small local memory. For the column convolution we are able
to ignore the horizontal halo elements which we had to include in
the conventional 2D convolution as depicted in Figure 19. Therefore,
the ratio between halo elements and output elements in a tile signifi-
cantly decreases. Since we do not need to load halo elements in one
dimension, the tiles do not overlap in this dimension too.

Creating the overlapping tiles for the row and column convolu-
tion is again realized by using the slide2d function on a padded in-
put. Intuitively, we divide each row into overlapping tiles for the row
convolution and each column into overlapping tiles for the column
convolution. Thus, we express the computation using the expression
shown in Listing 9.

The arrangement of the tiles used in Listing 9 is illustrated in Fig-
ure 20. The tile sizes were chosen according to the Nvidia Toolkit

52 optimizing stencil computations using low-level primitives

1 conv = λ b weightsX weightsY input .

2 (convColumn b weightsY ◦ convRow b weightsX) input

3

4 convRow = λ b weights input .

5 (mapWorkgroup1(mapWorkgroup0(λ tile .

6 (mapLocal1(mapLocal0((λ nbh .

7 (toGlobal(mapSeq id) ◦
8 reduceSeq (+) 0 ◦ mapSeq (∗) ◦ zip) (jo in nbh) weights)) ◦
9 sl ide2d 1 1 17 1 ◦

10 toLocal(mapLocal1(mapLocal0 id))) tile))) ◦
11 // divide each row into tiles that contain 80 elements

12 // the input only needs to be padded on the left and right

13 sl ide2d 1 1 144 128 ◦ pad2d 0 0 8 8 b) input

14

15 convColumn = λ weights input .

16 (mapWorkgroup1(mapWorkgroup0(λ tile .

17 (mapLocal1(mapLocal0((λ nbh .

18 (toGlobal(mapSeq id) ◦
19 reduceSeq (+) 0 ◦ mapSeq (∗) ◦ zip) (jo in nbh) weights)) ◦
20 sl ide2d 17 1 1 1 ◦
21 toLocal(mapLocal1(mapLocal0 id))) tile))) ◦
22 // divide each column into tiles that contain 80 elements

23 // the input only needs to be padded on the top and bottom

24 sl ide2d 80 64 1 1 ◦ pad2d 8 8 0 0 b) input

Listing 9: Applying Overlapped Tiling and using local memory in the row
and column convolution

example [51]. In the row convolution, a tile contains 144 elements
in total and covers a single row while overlapping 16 elements with
neighboring tiles on each side. The column convolution tile contains
80 elements, covering a single column. Now we successfully sepa-
rated the convolution computation into two distinct computations
and decreased the amount of computations needed to compute a sin-
gle output element. We also decreased the ratio of halo elements to
output elements in a tile which allows to compute more output ele-
ments with fewer memory accesses.

We discussed how to functionally express separate convolution
computations that use a separable convolution kernel. Furthermore,
we reintroduced overlapped tiling and local memory to these expres-
sions. The performance of the handwritten OpenCL kernels shown in
Figure 17 in Section 3.2.3 revealed that these tile sizes lead to a signif-
icant performance drawback compared to the separated convolution
that does not apply tiling. In the next section, we discuss the prob-
lem with the current tile sizes and examine how to improve tiling in
separated convolutions using LIFT’s IL.

3.2.3.3 Improve Tiling in Separated Convolution

In this section, we specifically improve the tiling in the column con-
volution. Memory accesses to global memory are costly but if consec-

3.2 optimizing stencil convolution 53

19 ...

20 toLocal(mapLocal1(mapLocal0 id)) tile))) ◦
21 sl ide2d 80 64 1 1 ◦ pad2d 8 8 0 0 b) input

Listing 10: Low-level expression creating tiles that enfore uncoalesced
global memory access in column convolution

19 ...

20 toLocal(mapLocal1(mapLocal0 id)) tile))) ◦
21 sl ide2d 80 64 16 16 ◦ pad2d 8 8 0 0 b) input

Listing 11: Low-level expression creating tiles that enable coalesced global
memory access in column convolution

utive work-items access consecutive elements in global memory the
accesses are coalesced. This means that multiple accesses to the DRAM
of the GPU are performed in a single transaction. In OpenCL, two di-
mensional data is stored in a row-major order on the device. This
means that consecutive work-items of a work-group should access
elements of the same row to achieve coalesced accesses.

Work-items access the tiles created in the expression shown in List-
ing 10. Local work-items, thus work-items in the same work-group,
are mapped onto the column tile whose shape is illustrated in Fig-
ure 20. The first work-item of a work-group accesses the first element
of the tile which is the uppermost element of the column tile. The
second work-item accesses the second element of the tile in row ma-
jor order and so on. Since the column tile has width of 1, the next
element in row major order is the element in the next row directly
underneath the first element. Thus, every work-item in a work-group
accesses another row and memory accesses of a work-group can not
be coalesced. This results in a significant performance drawback of
the generated kernel for this expression as observed previously.

In order to address this problem, we need to coalesce the memory
accesses of local work-items to global memory. The general idea is
to increase the width of the column tile. This way, the second work-
item accesses the element next to the first work-item and so on. The
choice of how much we increase the column tile width depends on
the hardware.

On Nvidia GPUs, work-items of a work-group are divided for exe-
cution into groups of 32 called warps (or wavefronts on AMD GPUs).
The optimal size of the column tile width depends on how many
work-items are scheduled to access the global memory at the same
time. On older Nvidia GPUs (Compute Capability < 2), global mem-
ory accesses are coalesced for a half warp (16 work-items). Therefore,
we should increase the width of the tile to 16 elements such that ev-
ery work-item accesses the same row at the same time. This is exactly
the tile size we find in the Nvidia guide to optimize separable con-

54 optimizing stencil computations using low-level primitives

padded input

8

80
8 + 64 + 8

16

Figure 21: Arrangement of overlapping tiles in the column convolution to
coalesce global memory accesses

input in global memory

tile in local memory

transpose

Figure 22: Column convolution: Copying transposed tile to local memory

volution [51]. This guide is from 2007 and newer generations of GPU
cores have been released since. Nowadays, global memory accesses
are coalesced for a complete warp of 32 work-items.

This way of tiling the input can be expressed using slide2d as shown
in Listing 11. This arrangement of tiles for the column convolution is
visualized in Figure 21.

To summarize, in the previous sections we discussed why it is ben-
eficial to separate convolution computations in a row and column
convolution if possible. We evaluated the performance benefit using
handwritten OpenCL kernels and introduced how to express this op-
timization using LIFT’s IL. Furthermore, we reintroduced overlapped
tiling and local memory and discussed how to improve tile sizes for
separated convolution computations. In the following sections we dis-
cuss more advanced optimizations specifically for the column convo-
lution.

3.2.4 Transposing the Local Memory Tile in the Column Convolution

On some Nvidia GPUs it might be beneficial to transpose the tile
before loading it into local memory to change the memory access

3.2 optimizing stencil convolution 55

Figure 23: Performance of column convolutions when transposing tiles and
adding extra columns

pattern in local memory. This optimization is applied in the exam-
ple kernel code of the optimization guide for separable convolution
by Nvidia [51]. This optimization is shown in Figure 22. Implement-
ing this in low-level programming languages like OpenCL or CUDA
requires to change memory allocation and accesses throughout the
kernel.

performance The performance compared to the column convo-
lution without transposing the local memory tile is illustrated in Fig-
ure 23. The kernel implementing the transposed tile column convolu-
tion is shown in Appendix A.1 in Listing 33. Unfortunately, transpos-
ing the tile before loading it into local memory is not enough to speed
up the computation. By transposing the tile, we introduced so called
bank conflicts which we discuss later when accessing the local mem-
ory. Resolving these bank conflicts eventually achieves a speedup of
1.01 compared to the column convolution without transposing the
column convolution tile. The kernels implementing the tiled column
convolution with resolved bank conflicts are shown in Appendix A.1
in Listing 34 and Listing 35. Although this optimization does not sig-
nificantly improve the performance on the GPU we used to conduct
our experiments, it is suggested by Nvidia to apply this optimization
to the column convolution and we discuss how to functionally ex-
press the transposition of the tile before copying it to local memory.
In Section 3.2.4.1, we discuss the concept of bank conflicts and how
to resolve them using low-level primitives.

representation in lift Using our low-level primitives and the
transpose function, we are able to apply the transposition of the tile in-
tuitively as shown in Listing 12. Instead of making multiple changes
in the kernel which include error-prone index computations, we sim-
ply add transpose twice directly indicating the original intend of trans-
posing the tile. The first transpose (line 22) transposes the tile as shown
in Figure 22. After transposing, the tile is loaded into local memory

56 optimizing stencil computations using low-level primitives

18 ...

19 sl ide2d 17 1 1 1 ◦
20 transpose ◦
21 toLocal(mapLocal1(mapLocal0 id)) ◦
22 transpose) tile))) ◦
23 sl ide2d 80 64 16 16 ◦ pad2d 8 8 0 0 b) input

Listing 12: Column convolution: Storing transposed tile in local memory

by every work-group as before. By transposing we change the type
of the tile from a n×m matrix to an m×n matrix. However, the rest
of the expression expects a matrix of the original type. The slide2d in
line 19 creates the original neighborhoods in every column. Apply-
ing this function unchanged on the transposed tile obviously returns
the result also transposed. Therefore, we apply transpose again in line
20 after loading it into local memory. This restores the orientation
of the tile. The semantics of the expression remains unchanged be-
cause transposing a matrix (line 22), applying the identity (line 21)
and transposing it again (20) returns the original matrix.

The only new rewrite rule that is needed to introduce the trans-
posed tile is defined as follows:

rewrite rule 8 (transposition identity):

f→ f ◦ transpose ◦ transpose | transpose ◦ transpose ◦ f

The application of the identity function and the transpose shown
in Listing 12 can commute without changing the semantics of the
functional programming. Since the proof and steps to rewrite the ex-
pression to use store a transposed tile are obvious, we do not discuss
them here.

Next, we discuss the concept of banks, bank conflicts and how to
avoid them using our low-level primitives.

3.2.4.1 Avoiding Bank Conflicts

Local memory is organized in so-called banks of equal size. These
banks are accessed simultaneously by multiple work-items of the
same work-group. If two different work-items load from or store
to two different banks, these memory transactions are parallelized
achieving high memory bandwidth. However, if two different work-
items access elements stored in the same memory bank, these ac-
cesses are executed sequentially. This is called a two-way bank conflict.
Generally, n work-items of a warp accessing the same bank simul-
taneously is called a n-way bank conflict. The amount of banks and
their size depend on the specific device. Devices with a compute ca-
pability 1.X contain 16 banks whereas devices with higher compute
capability contain 32. Usually, a bank contains 32 bit words although

3.2 optimizing stencil convolution 57

0 1 2 1514 0 1 1514... ...
0 1 2 1514 0 1 1514... ...
0 1 2 1514 0 1 1514... ...

...

...

...

xbank x

80

16

half-warp access:
16-way bank conflict

...

...
0 1 2 1514 0 1 1514... ...
1 2 15 0 1 015... ...
2 3 4 10 2 3 10... ...

...

81

0
13 2
2

half-warp access:
no bank conflict

add extra column

16

Figure 24: Column convolution: Arrangement of banks for transposed tile
on GPUs with 16 banks

the size of a bank can be manually increased to 64 bit words on de-
vices with compute capability 3.X to avoid performance pitfalls using
double precision data. Another important factor is how local mem-
ory accesses are scheduled. On devices with compute capability 1.X,
a memory request for a warp (32 work-items) is split in two sepa-
rate requests for each half warp. On modern GPUs a complete warp
simultaneously accesses the shared memory. When storing data to lo-
cal memory, consecutive 32 bit words are stored in consecutive banks.
Since we use single precision floating point numbers in our evalu-
ation, every float is stored into a single bank. For example when
storing a buffer containing 16× 4 floating point numbers into local
memory on a device with 32 banks, the floats in the first two rows
(32 floats) are each stored in one of the 32 available banks consecu-
tively. The first float in the third row is then again stored in the first
bank and so on.

avoiding bank conflicts for half warp accesses Execut-
ing our column convolution on an older GPU of compute capability
1.X with 16 banks and shared memory requests for each half warp
results in bank conflicts on local memory accesses. We discuss how
to avoid bank conflicts for these devices as introduced in [51]. After-
wards we show that this solution is not sufficient for modern GPUs
and discuss how to avoid bank conflicts on newer architectures as
well.

The arrangement of banks for our transposed buffer containing
80× 16 floats is shown in Figure 24. Each row contains 80 floating
point numbers. The first consecutive 16 numbers are stored in the 16

58 optimizing stencil computations using low-level primitives

80

16

16

8

Work-group
split in 4 warps

Tile in local memory
input

Figure 25: Column convolution: Memory access of a single work-group
when transposing the tile before copying to local memory

banks 0 to 15. The 17th number is then again stored in bank 0 and
so on. Since 80 is evenly divisible by 16, the last element of the first
row is stored in bank 15. Therefore, the arrangement of banks for
the second row is exactly the same as for the first row as visualized
in Figure 24. The crucial question now is how these elements are ac-
cessed. In the hand-tuned version by Nvidia a work-group with 16×8
work-items is used. This work-group is split into four warps for exe-
cution. The global and local memory accesses for these work-groups
are shown in Figure 25. A 16× 80 tile is assigned to a 16× 8 work-
group. This work-group accesses the first eight rows of the tile and
stores them in a transposed manner into local memory. Afterwards
the same work-group accesses the next 8 rows and stores them into
local memory until the whole buffer is copied. Global memory ac-
cesses are coalesced but the shared memory is accessed column wise
since we transpose the tile before storing it. Assuming that memory
requests of a warp are divided into half warp requests, the first half
warp of the work-group accesses the first column of the tile in shared
memory. Comparing this access pattern to the arrangement of banks
depicted in Figure 24 reveals that every work-item of a half warp ac-
cesses the same bank. This results in a 16-way bank conflict, and all
16 accesses are executed sequentially. To resolve these bank conflicts,
each work-item of the same half warp has to access another bank. A
simple solution is to increase the local memory buffer by adding an
extra column which remains unused during computation. However,
this additional column changes the arrangement of the local memory
banks as shown on the right side of Figure 24. Now all 16 work-items
of each half warp access different banks, thus we avoided all bank
conflicts.

In LIFT, every array xs has a dedicated size (for example n) en-
coded in its type: e. g. xs : [α]n. This size is used to determine the
size of the OpenCL buffer that eventually contains the elements in

3.2 optimizing stencil convolution 59

the kernel code. To express this optimization using our primitives,
we first need to distinguish the size of a buffer and its capacity. The
size specifies the amount of elements it contains while the capacity
specifies the maximum number of elements which can be stored in
this buffer. Thus, to avoid bank conflicts we want to increase a buffers
capacity without changing its size. To functionally express this opti-
mization, we introduce a new primitive similar to the high-level pad
primitive. The low-level increase primitive is used to increase the ca-
pacity of a buffer without adding elements that should be included
in the computation.

definition 3 .6: Let xs be an array of size n with elements xi where
0 < i 6 n. Let l and r be two positive integer values. The increase primitive
is then defined as follows:

increase l r [x1, . . . , xn]
def
= [x1, . . . , xn]

while it is guaranteed that the capacity of the buffer used to store xs

is increased by l elements on its left and r elements on its right end

The type of increase is defined as follows:

increase : int→ int → [α]n → [α]n

The computation of the stencil does not depend on the capacity of
the buffer used to store the elements as long as the correct elements
are loaded and stored. Therefore, the increase primitive indicates our
code generator, which is discussed in the next chapter, to increase the
capacity of the buffer in such a way that it does not affect the result
of an output element. However functionally, the increase primitives
equals the identity function. Hence, id = increase l r. Note that since
we define incease as the identity function, LIFT’s type system should
be extended in future work introducing a capacity for arrays xs which
might differ compared to its size. This would allow to functionally
encode this optimization in the types of data structures.

Similar to the already introduced pad2d function, we introduce a in-
crease2d function which is used in our column convolution to increase
the size of the tile in shared memory:

definition 3 .7: Let xs be an array of size m whose elements are arrays
of size n. Let top, bottom, left, right be positive integer values. The
increase2d function is then defined as:

increase2d top bottom left right xs
def
=

(transpose ◦ increase left right ◦
transpose ◦ increase top bottom) xs

If top = bottom, left = right we also write

increase2d top left xs

60 optimizing stencil computations using low-level primitives

19 ...

20 transpose ◦
21 toLocal(mapLocal0(mapLocal1 id)) ◦
22 transpose ◦ increase2d 0 0 0 1) tile))) ◦
23 sl ide2d 80 64 16 16 ◦ pad2d 8 8 0 0 b) input

Listing 13: Column convolution: Avoiding bank conflicts by artificially in-
creasing the buffer capacity

instead of

increase2d top top left left xs

The functional expression which applies this optimization using
our new low-level primitive is shown in Listing 13.

avoiding bank conflicts for complete warp accesses test
Finally, we examine if increase resolves bank conflicts on modern
GPUs as this version of the column convolution is optimized for
Nvidia devices with compute capability 1.X. Modern GPUs have 32

banks which are accessed by a complete warp. The arrangement of
banks without adding a column using a 80×16 buffer in shared mem-
ory is shown in Figure 26. Every work-item accesses the same bank
as eight other work-items. Thus without adding an extra column we
have bank conflicts too, however this time an 8-way bank conflict. By
adding another column to the tile we shift the banks again but it is
not sufficient to resolve all bank conflicts since two work-items of
a warp access bank 0. To resolve all bank conflicts we have to add
two columns which fully resolves the bank conflicts. Another solu-
tion would be to change the width of the tile from 16 to 32. This way,
we have similar setup as before. A whole warp accesses one row in
global memory and one column in shared memory when storing the
transposed tile. By adding one column to this new tile we shift the
banks in another way such that no bank is accessed twice.

The rewrite rule needed to introduce the increase primitive is de-
fined as:

rewrite rule 9 (increase identity):

f→ increase l r ◦ f | f ◦ increase l r

As we have seen in this section, some optimizations are highly de-
pending on low-level hardware details. For example one has to care-
fully consider the choice of tile sizes and work-group configurations
according to the warp scheduling and the amount of banks in a GPU.
In the next section, we examine one final optimization to further im-
prove the performance of stencil computations by reducing boundary
checks.

3.2 optimizing stencil convolution 61

0 1 2 031 ... 31 15...... 0
16 17 18 1615 ... 15 31......

...

...

...

xbank x

80

16

warp access:
8-way bank conflict

16
0 1 2 031 ... 31 15...... 0

...

...

...

82

warp access:
no bank conflicts

add two extra columns

16

0 1 2 0 ... 15...... 1631
18 19 17 17 1

031

4 6 3 4 43...
...

17
20 18 18 2 3

... ...5 19 20 21

...

...

...

81

warp access:
2-way bank conflict

add extra column

16

0 1 2 0 ... 15...... 1631
17 18 19 16 17 16 17 0 1

031

2 3 4 21 1... 2

...

31 0 1 30 31...30 31 16 17

...... 17 18

Figure 26: Column convolution: Arrangement of banks for transposed tile
on GPUs with 32 banks

3.2.5 Loop Unrolling and Reducing Boundary Checks

Stencil kernels in low-level languages like OpenCL or CUDA typi-
cally contain small loops in their imperative kernel code. Similarly,
our low-level primitives like mapSeq or mapLocal are used in the code
generation which is described later to create for-loops. However if
the loop is iterated only a few times, it is almost always beneficial to
unroll the loop to avoid its overhead. A potentially beneficial place to
unroll loops is when loading a tile from global to local memory. Tak-
ing the column convolution as an example, every work-group copies
a 16× 80 tile to local memory using work-groups of size 16× 8. Thus,
the tile is loaded to local memory iterating a loop 10 times as visu-
alized in Figure 27. The critical parts of this process to load this tile
from global to local memory are the halo regions. When copying a
halo region to local memory we need to check for potential out-of-
bounds accesses and apply the boundary handling in these cases. An
intuitive implementation of this loop can be found in the kernels that
implement the optimization discussed in the last section, for example
in Appendix A.1 in Listing 34. The loop that copies the tile to local
memory is shown in Listing 14 for convenience. Boundary checks
for both, the upper halo (line 13) and the lower halo (line 14), are

62 optimizing stencil computations using low-level primitives

Tile in local memory

input

80

16

1
2
3
4
5
6
7
8
9

10

iterations

lower halo

upper halo

1 2 ...

Figure 27: Visualizing iterations to load a tile from global to local memory

9 ...

10 for (int lid1 = get_local_id(1); lid1 < 80; lid1 = (8 + lid1)) {

11 int x = lid0 + (16 * wg0);

12 int y = (-8 + lid1 + (64 * wg1));

13 y = max(0, y);

14 y = min(4095, y);

15

16 L[lid1 + (81 * lid0)] = IN[x + (4096 * y)];

17 }

18 ...

Listing 14: Handwritten for-loop that copies a tile from global to local
memory

executed in every iteration although each one is only needed in one
specific iteration. By unrolling the loop into 10 single iterations exe-
cuted subsequently, we are able to omit boundary checks in almost
all iterations and only execute them when necessary.

performance The performance of a handwritten kernel that ap-
plies loop unrolling to reduce boundary checks compared to the pre-
vious column convolutions is illustrated in Figure 28. The kernel that
implements the unrolled loop is shown in Appendix A.1 in Listing 36.
Reducing boundary checks using loop unrolling achieved a speedup
of 1.13 compared to the previous best column convolution.

representation in lift Now, we examine how to functionally
express this optimization using LIFT’s IL. To express loop unrolling
using our low-level primitives we introduce a new primitive called
mapSeqUnroll. It is defined exactly as the mapSeq primitive with the
slight difference that it indicates the code generation to always emit
unrolled loops if possible. This is when the iteration count of a loop
is statically known. Listing 15 shows the column convolution using
tiling and local memory without unrolling the copying of the tile
to local memory. Using this new primitive, we are able to express the

3.3 summary 63

Figure 28: Performance of column convolution with reduced boundary
checks compared to previous column convolutions

19 ...

20 transpose ◦
21 // using a configuration of 16 x 8 local work-items

22 toLocal(mapLocal1(mapLocal0 id)) ◦
23 transpose ◦ increase2d 0 0 0 1) tile:[[float]16]80))) ◦
24 sl ide2d 80 64 16 16 ◦ pad2d 8 8 0 0 b) input

Listing 15: Expression to copy a tile from global to local memory

optimization discussed above as show in Listing 16. We first explicitly
divide the tile in 10 chunks using split 8 as shown in line 26 which
results in an array of chunks. The tile is copied to local memory in 10

steps while the mapSeqUnroll states our intent to use an unrolled loop.
This allows omit boundary checks for the first and last iteration which
happens automatically during code generation which we discuss in
the next chapter.

3.3 summary

In this chapter we started with a functional expression that described
a 17× 17 convolution stencil computation which is easy to write by
a programmer familiar with functional programming. This expres-
sion is shown again in Listing 17. We incrementally formalized and
applied multiple well-known optimizations for stencil computations
like overlapped tiling and separating the convolution into a row and
column convolution. In order to express some of these optimizations,
we extended the functional low-level language of the LIFT framework
by adding new low-level primitives like increase or mapSeqUnroll and
reused the earlier introduced slide primitive. We systematically ap-
plied all optimizations one after each other and in a way an optimiz-
ing compiler could perform automatically. Since all applied optimiza-

64 optimizing stencil computations using low-level primitives

19 ...

20 transpose ◦
21 // join the partitioned array in local memory again

22 map(jo in) ◦
23 // unroll the loop using the new mapSeqUnroll primitive

24 toLocal(mapLocal1(mapSeqUnroll(mapLocal0 id))) ◦
25 // split tile in 10 chunks of size 8

26 map(s p l i t 8) ◦
27 transpose ◦
28 increase2d 0 0 0 1) tile))) ◦
29 sl ide2d 80 64 16 16 ◦ pad 8 8 0 0 b) input

Listing 16: Low-level expression to copy a tile from global to local mem-
ory using loop unrolling

1 conv = λ b weights input .

2 (map(map(λ nbh .

3 (reduce (+) 0 ◦ map (∗) ◦ zip) (jo in nbh) weights)) ◦
4 sl ide2d 17 1 ◦ pad2d 8 8 b) input

Listing 17: High level expression for a 17× 17 convolution

tions are provably semantics preserving we can guarantee that we
did not change the semantics of the original high-level program. Fi-
nally we end with a fully optimized functional program of low-level
primitives as shown in Listing 18.

Using the optimizations discussed in this chapter we are able to im-
prove the performance of the 17×17 convolution achieving a speedup
of 40.9 comparing the naive version with the most optimized version.
This result emphasizes the importance of applying these optimiza-
tions in a structured way as there are many caveats during the opti-
mization process where a wrong decision in optimization parameters
may lead to a significant performance drawback.

At this point, one might ask two specific questions considering an
arbitrary stencil expression: Which optimizations should be applied
in which order and when is an application sufficiently optimized?
This question is a well-known problem, also known as phase ordering,
in optimizing state-of-the-art compilers like clang or gcc. To this day,
there is no sufficient answer to this problem and optimizing com-
pilers still use heuristics to decide which optimizations are applied
when. However when talking about optimizations we are not consid-
ering instruction combining or inlining like the existing compilers. Fur-
thermore, we talk about stencil-specific optimizations like overlapped
tiling which existing compilers can not apply. Therefore, we defined
means to systematically (and possibly automatically once heuristics
or performance models are defined) apply application-specific opti-
mizations using our functional approach.

3.3 summary 65

1 // separating convolution - Section 3.2.3

2 conv = λ b weightsX weightsY input .

3 (convColumn b weightsY ◦ convRow b weightsX) input

4

5 convRow = λ b weights input .

6 // using low-level primitives - Section 3.1

7 (mapWorkgroup1(mapWorkgroup0(λ tile .

8 (mapLocal1(mapLocal0(λ nbh .

9 (toGlobal(mapSeq id) ◦
10 reduceSeq (+) 0 ◦ mapSeq (∗) ◦ zip) (jo in nbh) weights)) ◦
11 sl ide2d 1 1 17 1 ◦
12 // utilizing local memory - Section 3.2.2.2

13 toLocal(mapLocal1(mapLocal0 id))) tile)) ◦
14 // overlapped tiling - Section 3.2.2

15 sl ide2d 1 1 144 128 ◦ pad2d 0 0 8 8 b) input

16

17 convColumn = λ b weights input .

18 (mapWorkgroup1(mapWorkgroup0(λ tile .

19 (mapLocal1(mapLocal0(λ nbh .

20 (toGlobal(mapSeq id) ◦
21 reduceSeq (+) 0 ◦ mapSeq (∗) ◦ zip) (jo in nbh) weights)) ◦
22 sl ide2d 17 1 1 1 ◦
23 transpose ◦
24 map(jo in) ◦
25 toLocal(mapLocal0(mapSeqUnroll(mapLocal1 id))) ◦
26 // reduce boundary checks - Section 3.2.5

27 map(s p l i t 8) ◦
28 // transpose tile - Section 3.2.4

29 transpose ◦
30 // avoid bank conflicts - Section 3.2.4.1

31 increase2d 0 0 0 1) tile)) ◦
32 // global memory coalescing - Section 3.2.3.3

33 sl ide2d 80 64 16 16 ◦ pad2d 8 8 0 0 b) input

Listing 18: Low-level expression for a 17×17 convolution applying all op-
timizations discussed in this thesis

4
G E N E R AT I N G H I G H P E R F O R M A N C E O P E N C L
C O D E

In this chapter we explain how we implemented the code generation
producing high performance OpenCL kernels using our low-level ex-
pression written in our functional data parallel IL (Intermediate Lan-
guage) introduced in the previous chapter.

Given an expression written in LIFT’s IL, the compilation process
is divided into several steps as visualized in Figure 29. These steps
are discussed in more details below:

type inference The first step in LIFT’s compilation process is a
static type check and type inference. The compiler implements
a dependent type systems that considers array lengths, possible
ranges of values which will be of more importance later, and
OpenCL memory address spaces. The static type check vali-
dates that input and output types match at every step of the
computation. This ensure that all primitives are composed and
nested correctly preventing the user to write invalid code. Type
checking and inference is one of the most important steps dur-
ing the compilation process because the type information is key
to achieve high performance OpenCL code. For example, this
information is extensively used in the next two steps

memory allocation During memory allocation, the type infor-
mation received in the first step is used to determine the re-
quired buffer size and corresponding OpenCL address space
for any significant intermediate result. An intermediate result
is regarded as significant if data has been modified. A simple

Type
inference

Memory
Allocation

Array
Accesses

Barrier
Elimination

OpenCL Code
Generation

OpenCL

kernel

High-level
expression

Low-level
expression

Code Generation

Figure 29: Compilation steps to compile a high-level expression to an
OpenCL kernel

67

68 generating high performance opencl code

memory allocation would allocate a new buffer for ever inter-
mediate result. This would be highly inefficient since primitives
like slide or pad only shape the data before it is accessed instead
of modifying it.

array accesses All array accesses in the LIFT framework are im-
plicit rather than explicit. Each primitive implicitly defines how
its input should be accessed - map for example is defined to ac-
cess each element once and apply a unary function to it. Since
there are no means to explicitly access arrays, data races are
avoided by construction. However, this introduces two main
challenges: First, unnecessary intermediate results need to be
avoided. Therefore, one has to store the information of how
memory should be accessed in the compiler when a data-layout
primitive is encountered. Second, accesses to multidimensional
arrays which have a flat representation in memory need to be
efficiently converted to one dimensional accesses.

barrier elmination To ensure memory consistency, threads that
access the same memory location must synchronize. The only
primitives that potentially allow multiple threads to access the
same memory location are the parallel map primitives. There-
fore, all threads need to synchronize after every occurring paral-
lel map. This is realized be emitting a return after mapWorkgroup
and mapGlobal because OpenCL does not allow to synchronize
global threads or work-groups. However, a barrier is emitted
after every mapLocal primitive to synchronize all work-items of
a work-group. In some cases these barriers can be eliminated,
for example when there is no sharing because all work-items
continue to use the same memory locations. If it can be stati-
cally proved that barriers are not necessary, these barriers are
eliminated.

opencl code generation As a final step, the lift compiler gen-
erates the low-level OpenCL kernel code. The compiler follows
the data flow and emits matching code snippets for every primi-
tive. At this point, every previous compilation step has been ex-
ecuted successfully and low-level optimizations are performed.
As an example, using the type information received earlier, the
compiler infers the amount of threads assigned to a mapLocal
primitive. Therefore it can eliminate the loop which would nor-
mally be emitted if the number of threads exceeds or is equal to
the amount of elements processed.

All these compilation steps emphasize the importance of preserv-
ing the information captured in the functional primitives and their
types. In contrast to most existing code generation frameworks, LIFT
generates low-level loop based code at the very last stage of the com-

4.1 lift view system 69

[float]n

[float]n+2

[[float]3]n

C
O
N
S
T
R
U
C
T
I
O
N

(mapGlobal(reduceSeq (+) 0) ∘
 slide 3 1 ∘ pad 1 1 clamp) input

padView
int: l, r
boundaryFct: clamp

indexFct (int i) =
 return clamp(i, (n+l+r));

inputView
int: n // size

slideView
int: slideSize, slideStep

indexFct (int i, int j) =
 return i * slidestep + j;

input

Figure 30: Construction of LIFT’s views for a 3-point Jacobi stencil

pilation process and is therefore able to utilize unique opportunities
for optimizations as much as possible.

In the following section we discuss LIFT’s view system which is
used to handle data-layout primitives during the Array Access stage.
Since both new high-level primitives (slide and pad) introduced in this
thesis shape the layout of the data rather than modifying it, this step
is of the compilation process is particularly interesting.

4.1 lift view system

When a data-layout primitive is encountered during compilation, a
compiler-internal data structure called view is created. Views store
the information how the memory should be accessed by subsequent
primitives. Once data is going to be modified, the view system is used
to resolve memory accesses and the result is stored in a new buffer
allocated in the memory allocation phase. This view system can be
compared to views in SQL which provide a virtual result of a query
that can also be used in subsequent queries.

The view system is divided into two parts: the view construction
where information is gathered of how to access data, and the view
consumption where this information is used to generate array accesses.
Primitives that do not modify data but shape it construct a view data
structure. These particularly include the two new primitives slide and
pad which we focus on in this section.

We explain both construction and consumption using a simple 3-
point Jacobi stencil example shown in Listing 19:

1 mapGlobal(reduceSeq (+) 0) ◦ s l id e 3 1 ◦ pad 1 1 clamp

Listing 19: Low-Level Expression for a simple 3-Point Jacobi stencil

view construction The View construction for this example is
visualized in Figure 30. The left-hand side visualizes the intermedi-

70 generating high performance opencl code

slideView[i,j]

(i,j)

padView[x]

input[clamp(i * slideStep + j, (n+l+r))]

consume slideView: indexFct(i,j) =
 i * slideStep + j = x

consume padView: indexFct(i) =
 clamp(x, (n+l+r))

C
O
N
S
U
M
P
T
I
O
N

(mapGlobal(reduceSeq (+) 0) ∘
 slide 3 1 ∘ pad 1 1 clamp) input

padView
int: l, r
boundaryFct: clamp

indexFct (int i) =
 return clamp(i, (n+l+r));

inputView
int: n // size

slideView
int: slideSize, slideStep

indexFct (int i, int j) =
 return i * slidestep + j;

Figure 31: Consumption of LIFT’s views for a 3-point Jacobi stencil

ate results when applying the data-layout primitives pad and slide
successively. The right-hand side visualizes the corresponding view
data structures representing these intermediate results in our com-
piler. Furthermore, the input is also represented by a corresponding
inputView as shown on the top right corner. Views are stored in a
linked list, such that every view is connected to the previously cre-
ated view. The first primitive that is encountered is the pad primi-
tive. Since it is data-layout primitive, a view data structure is created
which is linked to the inputView. Every view is defined by the type of
the primitive which caused its creation. We start with an input array
of length n. Once the pad primitive is encountered, a new view is cre-
ated storing information regarding the type of this primitive. Thus,
the pad-view stores the amount of elements added on the left and
right-hand side and the utilized boundary function. This information
is necessary to later compute array indices using the function indexFct
during view consumption. Intuitively the pad-view represents an ar-
ray of size n+ 2 as shown in the center of Figure 30,

The next primitive encountered is the slide primitive which again
creates another view structure that is connected to its predecessor pad-
view. The slide-view stores the step and size of the encountered slide
primitive to define its indexFct. This view represents a two dimen-
sional data structure as shown at the bottom. Therefore, the index
function defined by the slide-view needs to transform a two dimen-
sional access to a one dimensional access.

view consumption The first primitive after pad and slide which
we already dealt with is a mapGlobal primitive with a nested reduce-
Seq primitive. These primitives are not data-layout primitives but de-
scribe computation which leads to the consumption of the views cre-
ated so far. The consumption of the views is visualized in Figure 31.
Again, the intermediate results of evaluating the pad and slide prim-
itive are shown on the left-hand side while the view data structures
are shown on the right-hand side. Views are always consumed in the
opposite order of construction. The most recently created view is the

4.1 lift view system 71

slide-view (on the top right) which represents a two dimensional array.
This array is accessed by the mapGlobal(reduceSeq (+) 0) function. The
left-hand side of Figure 31 visualizes how accessing one particular
element of the slide-view is resolved. This element is accessed using
an outer index provided by the mapGlobal primitive (i in the figure)
which selects a specific neighborhood created by slide and an inner in-
dex provided by the reduceSeq primitive that accesses elements inside
a neighborhood (j in the figure). Since the slide-view only simulates
a two dimensional data structure that has a flattened representation
in memory, the two dimensional access needs to be converted to a
one dimensional access again. This conversion happens during view-
consumption is and is defined in the slide-view by the index function
indexFct. The one dimensional access is computed using the formula
i ∗ slideStep+ j as illustrated in Figure 31.

This newly computed index is then used to access the predeces-
sor pad-view which itself resolves another layer of indirection. The
pad-view (in the middle on the right) is consumed by applying the
boundary function to the given index. In our case, the clamp func-
tion ensures that indices that would exceed the bounds of the input
array are clamped to the outermost in-bound indices. The final index
computation is then passed to the inputView which is used to emit the
array access in the OpenCL kernel code.

summary The original input array is now accessed using the com-
puted index clamp(i ∗ slideStep+ j, (n+ l+ r)) defined by the index
function. This index was computed by consuming one view at a time
while passing on each result until there is no more layer of indirec-
tion.

The code implementing array accesses for this particular example
is show in Listing 20. The input array is accessed in lines 6 and 7

exactly as visualized in Figure 31 and as discussed above.

1 for (int gid = get_global_id(0);

2 gid<N;gid = (gid + get_global_size(0))){

3 acc = 0.0f;

4 for (int j = 0;j<3;j = (1 + j)){

5 acc = add(acc,

6 IN[(((-1 + gid + j) >= 0) ?

7 (((-1 + gid + j) < N) ? (-1 + gid + j) : (-1 + N)) : 0)]);

8 }

9 }

Listing 20: OpenCL code generated for accessing the input array for 3-
point Jacobi stencil

Similar to slide and pad, each data-layout primitive like split, join
or reorder defines its own view data structure including instructions
of how to consume incoming indices. Views of different data-layout
primitives can be arbitrarily connected as long as the functional pro-
gram is type safe. This may lead to an almost arbitrary amount of

72 generating high performance opencl code

1 (((((2 * i) + (i * N) + j) / (2 + N)) +

2 ((((2 * i) + (i * N) + j) % (2 + N)) * 2) +

3 ((((2 * i) + (i * N) + j) % (2 + N)) * M)) / (2 + M))

Listing 21: Unsimplified automatically generated array andex

layers of indirection that need to be resolved before accessing mem-
ory. Depending on the amount of connected views that need to be
consumed, index computations for accessing arrays might grow sig-
nificantly. This fact motivates an important phase during code gener-
ation which we discuss in the following section.

4.2 index computation simplification

Expressing computations using functional primitives allows to omit
explicit array accesses. Race conditions are avoided by construction
since arbitrary accesses to memory are not allowed. Furthermore, au-
tomatically generating correct indices is easily done in small steps
by constructing and consuming view data structures as explained
in the previous section. However, in order to generate efficient ar-
ray accesses, index computations need to be significantly simplified.
Chaining multiple views can easily lead to large automatically gener-
ated indices containing multiple repetitive subexpressions as shown
in Listing 21. This is a small but representative example as the auto-
matically generated indices might span across hundred or more lines
of code. This arithmetic expression can easily be simplified by a hu-
man as we see in the following. However if this expression is emitted
unchanged into the OpenCL kernel, multiple costly and unnecessary
operations are executed which results in a significant performance
drawback as we observe in the following chapter. Therefore, arith-
metic expression simplification is an inevitable and highly important
phase during code generation in order to generate high performance
OpenCL kernels.

Let us now examine how the expression shown in Listing 21 can
be simplified. For convenience we repeat the index computation and
use a mathematical notation:

2i+iN+j
2+N + 2((2i+ iN+ j)%(2+N)) +M((2i+ iN+ j)%(2+N))

2+M

Here % represents OpenCL’s %-modulo operation and every division
is integer division. LIFT’s arithmetic expressions are always trans-
formed to a certain canonical form which defines that terms are al-
ways written as sums of products. By factorizing some of these sums,
we are able to reduce fractions as shown in the following equations:

(2+N)i+j
2+N + (2+M)((2+N)i+ j)%(2+N))

2+M

4.3 opencl code generation 73

=
i+ j

2+N

2+M︸ ︷︷ ︸
0

+((2+N)i+ j)%(2+N)︸ ︷︷ ︸
j

= j

(15)

If we can statically proof that j < 2+Nwe can simplify the arithmetic
subexpression i

2+N to zero since we are computing integer division
which always rounds the result to the closest integer that is smaller
or equals the result. Subsequently, if we can also statically proof that
i < 2 +M we can simplify the whole fraction of Equation 15 to 0.
The right term of the sum can easily be simplified to j using modulo
arithmetic. Using LIFT’s symbolic arithmetic simplifier which relies
on type information to extract lengths of arrays and possible ranges of
all variables, we are able to automatically perform all simplification
steps discussed automatically. Thus, in this particular example we
were able to reduce the index computation shown in Listing 21 which
contains 24 operations to a single variable.

In this work, we significantly improved LIFT’s arithmetic expres-
sion simplifier to simplify indices generated from expressions con-
taining new primitives like slide and pad introduced in this thesis.

4.3 opencl code generation

The final step of the LIFT compilation process is the OpenCL code
generation. In this stage, the compiler follows the data flow of the
given expression and emits small code snippets for certain primitives
as discussed above. The generated code for our 3-point Jacobi exam-
ple we discussed in the previous section is show in Listing 22. For
low-level map primitives including the mapGlobal primitive used in
this example, for-loops are generated as shown in line 18. This par-
ticular for-loop iterates over the global-IDs of all work-items because
we used the mapGlobal primitive. If we statically know during compi-
lation that the number of work-items exceeds the number of elements
to process, no for-loop is emitted. The reduceSeq primitive nested in-
side the mapGlobal primitive causes the second for-loop in line 23

which is nested in the for-loop emitted for the mapGlobal primitive.
For primitives like slide or pad, no code is emitted because their infor-
mation has been used in the views and during array index computa-
tions. This results in the array access shown in line 25 as discussed in
the previous chapter. Since reduceSeq implicitly stores its result in pri-
vate memory we applied toGlobal(mapGlobal(id)) afterwards to copy
the result back to global memory. This can also be observed in the
generated code. After the for-loop emitted for the reduceSeq primitive
(lines 22-27) the result of the reduction is stored in the variable v__11

(line 11) which resides in the private memory of each work-item. Ap-

74 generating high performance opencl code

1 // (toGlobal(mapGlobal id) o

2 // mapGlobal(reduceSeq (+) 0) o slide 3 1 o pad 1 1 clamp) input

3

4 float add(float x, float y){

5 { return x+y; }

6 }

7 float id(float x){

8 { return x; }

9 }

10 kernel void KERNEL(const global float* restrict v__9,

11 global float* v__15, int v_N_0){

12

13 /* Static local memory */

14 /* Typed Value memory */

15 float v__11;

16 /* Private Memory */

17 for (int v_gl_id_6 = get_global_id(0);v_gl_id_6<v_N_0;

18 v_gl_id_6 = (v_gl_id_6 + get_global_size(0))){

19 float v_tmp_20 = 0.0f;

20 v__11 = v_tmp_20;

21 /* reduce_seq */

22 for (int v_i_7 = 0;v_i_7<3;v_i_7 = (1 + v_i_7)){

23 v__11 = add(v__11,

24 v__9[(((-1 + v_gl_id_6 + v_i_7) >= 0) ?

25 (((-1 + v_gl_id_6 + v_i_7) < v_N_0) ?

26 (-1 + v_gl_id_6 + v_i_7) : (-1 + v_N_0)) : 0)]);

27 }

28 /* end reduce_seq */

29 }

30 for (int v_gl_id_8 = get_global_id(0);v_gl_id_8<v_N_0;

31 v_gl_id_8 = (v_gl_id_8 + get_global_size(0))){

32 v__15[v_gl_id_8] = id(v__11);

33 }

34 }

Listing 22: OpenCL kernel generated for a 3-point Jacobi stencil

4.4 summary 75

plying toGlobal(mapGlobal(id)) results in the last for-loop emitted in
line 30 which is used to copy the result to the output buffer. Note
that id used in the second mapGlobal primitive and the operator +
used in the reduceSeq primitive are the only customizing functions
in this expressions. Both customizing functions have been emitted as
simple C functions above the kernel (lines 4 and 7) and are called at
the appropriate places (line 23 and line 32)

4.4 summary

In this chapter we briefly discussed the compilation stages of the
LIFT framework. We specifically focused on the view system which
is used to avoid unnecessary intermediate results. These views are
used as layers of indirection before accessing data stored in mem-
ory. However, when many views are connected together, the auto-
matically generated array indices become complicated. Therefore, we
also particularly focused on how to optimize these generated indices
and discussed the significant simplification potential by using simple
rules of algebra. Finally we analyzed a generated OpenCL kernel for
a simple 3-point Jacobi example and discussed which primitives of
the given expression caused which parts of the kernel to be emitted.

5
E VA L U AT I O N

In this chapter, we evaluate the performance of our functional code
generation approach for stencil applications. Specifically, we examine
if our low-level expression are compiled to OpenCL kernels with com-
petitive performance compared to the handwritten kernels discussed
in Chapter 3. Furthermore, we evaluate the impact of unsimplified
array accesses to examine the importance of arithmetic expression
simplification discussed in the previous chapter. Finally, compare our
generated kernel for the 17× 17 convolution example to the Nvidia
Toolkit example convolutionSeparable discussed in [51].

5.1 experimental and hardware setup

To conduct our experiments, we used an Nvidia Kepler K20c Graph-
ics Card (Compute Capability 3.5) and the driver version 361.42. It
contains 13 SMX (Streaming Multiprocessors) each containing 192

processors cores (2496 cores in total) running with a clock speed of
706 MHz. Each SMX is able to schedule 4 warps concurrently using
four warp schedulers and eight instruction dispatch units. Further-
more, each SMX contains 64 KB configurable local memory and L1

cache. In our configuration, the size of the local memory is 48 KB and
the size of the L1 cache 16 KB. The Kepler K20c contains 5GB of global
memory size with a bandwidth of 208 GB/sec. We use the Ubuntu
16.04.1 LTS Operating System with the kernel version 4.4.0-36-generic
x86_64. The used OpenCL Platform is NVIDIA CUDA version 1.2
CUDA 8.0.20.

Every experiment was conducted 100 times and we always present
the median of the measured results. We only consider kernel run-
times, hence, we ignore data transfer times from and to the OpenCL
device.

5.2 performance of handwritten convolution kernels

In the previous chapter, we reported the performance of handwritten
OpenCL kernels to evaluate the effect of specific optimizations. We
were able to speed up the naive version by a factor of 41. This empha-
sizes the importance of optimizing stencil computations for GPUs. In
this section we analyze and compare the performance of generated
OpenCL kernels using the low-level expressions written in LIFT’s
IL to the handwritten OpenCL kernels. Figure 32 visualizes the per-
formance of the handwritten kernels implementing all optimizations

77

78 evaluation

Figure 32: Performance of handwritten OpenCL kernels (incrementally) im-
plementing specific optimizations

discussed in the previous chapter using a logarithmic scale. Table 1

shows a short description of which optimization is implemented by
which kernel and where it is discussed in depth in the previous chap-
ter. Since we split the convolution in a row and column convolution,
thus in two different kernels, we are able to compare three different
kinds of kernels: The kernels computing the complete convolution,
the kernels that compute the row convolution and finally the kernels
that compute the column convolution which showed the most opti-
mization potential.

5.3 performance of generated convolution kernels

We start by comparing the first three kernels which all compute the
complete 17× 17 convolution without separating it into two kernels.
To generate the OpenCL kernels, we use the low-level expressions
discussed in the previous chapter. Figure 33 (a) compares the perfor-
mance of the generated kernels using the expressions discussed in
Section 3.2.1 and Section 3.2.2 to the handwritten references. All gen-
erated kernels are slower compared to the handwritten versions while
the first kernel being up to 2.61 times slower. This performance differ-

5.3 performance of generated convolution kernels 79

kernel(s) description section

00 No optimizations | Every global thread
computes one output element

Section 3.2.1

01 Overlapped Tiling and local memory usage
| Idle work-items in work-group during
computation

Section 3.2.2

02 Overlapped Tiling and local memory usage
| Improved work-group size

Section 3.2.3.3

03 Separate Convolution into row and column
convolution

Section 3.2.3

04 Separation + Overlapped Tiling Section 3.2.3.2

05 Separation + Overlapped Tiling | improved
tile sizes

Section 3.2.3.3

06 Separation + Overlapped Tiling + reducing
boundary checks

Section 3.2.5

07 Separation + Overlapped Tiling + transpos-
ing column convolution tile

Section 3.2.4

08 Separation + Overlapped Tiling + trans-
posing column convolution tile + increase
buffer to avoid bank conflicts

Section 3.2.4.1

09 Separation + Overlapped Tiling + transpos-
ing column convolution tile + resolve all
bank conflicts

Section 3.2.4.1

10 Separation + Overlapped Tiling + transpos-
ing + reducing boundary checks

Section 3.2.5

11 Separation + Overlapped Tiling + transpos-
ing + reducing boundary checks + increase
buffer to avoid bank conflicts

Section 3.2.4.1

12 Separation + Overlapped Tiling + transpos-
ing + reducing boundary checks + resolve
all bank conflicts

Section 3.3

Table 1: Description of evaluated handwritten OpenCL kernels including
references to sections where each optimization is discussed

80 evaluation

(a) Comparing performance of the gen-
erated 17x17 convolution kernels to
the handwritten references

(b) Comparing performance of the gen-
erated row convolution to the hand-
written convolutions

Figure 33: Comparing generated kernels to handwritten references for com-
plete and row convolution

ence is explainable by comparing the generated code to the handwrit-
ten kernel. Listing 23 compares the generated for-loop to compute
a single output element to the handwritten for-loop. The generated
kernel contains a large unsimplified arithmetic expression spanning
more than 25 lines. Obviously, executing all operations in this ex-
pression causes the significant performance difference compared to
the handwritten version. This shows that there is still potential im-
provement in arithmetic expression simplification during code gener-
ation. At the same time, it emphasizes the importance of simplifying
these expression as they have a significant impact on performance.
The other two generated kernels only show minor performance dif-
ferences.

performance of row and column convolution kernels

Next, we compare the performance of generated row convolution ker-
nels to handwritten ones. These results are shown in Figure 33 (b).
Comparing the performance of the row convolution kernels, we ob-
serve a significantly lower difference between generated and hand-
written kernels compared to the full convolution examples. However,
the generated kernels are still measurably slower than the handwrit-
ten references. Again, this is caused by arithmetic expressions in array
indices that are not as simple as possible.

Finally, we compare the performance of the column convolution
kernels for which we introduced several low-level optimizations in
the previous chapter. For example, we introduced to transpose a tile
before loading it into local memory while avoiding bank conflicts.
Thus, the column convolution is the most optimized expression we
examined in this thesis. Figure 34 shows the performance differences
of the generated and handwritten column convolution kernels. Every
generated column kernel matches the performance of the handwrit-
ten OpenCL kernels. Therefore, the more an expression is optimized,

5.4 measuring the overhead of unsimplified arithmetic expressions 81

1 // generated for-loop

2 for (int v_i_11 = 0;v_i_11<289;v_i_11 = (1 + v_i_11)){

3 v__16 = multAndSumUp(v__16, v__13[((((4096 * ((v_gl_id_9 +

4 (v_i_11 / 17) + (4112 * (((-8 + v_gl_id_10 +

5 (v_i_11 % 17)) >= 0) ? (((-8 + v_gl_id_10 +

6 (v_i_11 % 17)) < 4096) ? (-8 + v_gl_id_10 +

7 (v_i_11 % 17)) : 4095) : 0))) % 4112)) +

8 // ... skipping 25 lines

9 (((-8 + v_gl_id_10 + (v_i_11 % 17)) >= 0) ?

10 (((-8 + v_gl_id_10 + (v_i_11 % 17)) < 4096) ?

11 (-8 + v_gl_id_10 + (v_i_11 % 17)) : 4095) : 0)))

12 % 4112)) : 4095) : 0)))], v__14[v_i_11]);}

13

14 // handwritten for-loop

15 for (int i = 0; i < 289; i++) {

16 int x = gid0 - 8 + (i % 17);

17 int y = gid1 - 8 + (i / 17);

18 x = max(0, x);

19 x = min(x, 4095);

20 y = max(0, y);

21 y = min(y, 4095);

22 acc = acc + (IN[x + 4095 * y] * W[i]);

23 }

Listing 23: Comparison of for-loops that copy a tile from global to local
memory

the better are our performance results for our generated kernels. In
case of the column convolution kernels, the arithmetic expressions
are as simple as possible. Therefore, they do not cause a performance
drawback as in the other kernels seen before.

To summarize, every optimization discussed in the previous chap-
ter is successfully encoded using functional low-level expressions.
The previous figures showed that our generated kernels have compet-
itive performance compared the handwritten references. In the cases
where the generated kernels are significantly slower, its just a mat-
ter of improving the arithmetic expression simplification instead of
improving the functional expression.

5.4 measuring the overhead of unsimplified arithmetic

expressions

Unsimplified arithmetic expressions caused the performance draw-
backs of the kernels evaluated in the previous section. In this sec-
tion, we examine the impact of our arithmetic expression simplifier
by measuring the performance of kernels with and without simplified
expressions. The results are shown in Figure 35. This figure shows the
speedup of kernels with simplified expressions compared to the ver-
sions without simplification. Thus, a higher bar indicates the impor-
tance of simplification for this particular example. To get representa-

82 evaluation

Figure 34: Comparing performance of the generated column convolution to
the handwritten convolution

Figure 35: Speedup of kernels using simplified arithmetic expressions com-
pared to kernels without arithmetic simplification

tive results, we examine four different stencil variants with increasing
complexity. The first stencil we evaluate is a simple one dimensional 3-
point stencil. In this case arithmetic expression simplification has no
impact at all because the generated expressions are already as sim-
ple as they can be. The second stencil is a two dimensional 9-point
stencil without applying any optimizations. However, this stencil has
increasing complexity compared to the 3-point stencil because we use
the functions slide2d and pad2d as introduced in the previous chapters.
These functions apply the primitives slide and pad multiple times po-
tentially leading to complex arithmetic expressions. However, as we
observe in Figure 35, the impact of simplifying the expression is no-
ticeable but not significant. The third stencil we evaluate is the 17× 17
convolution applying overlapped tiling. Now that we applied some
optimizations, the low-level expressions increase in complexity. This

5.5 performance compared to nvidia toolkit example 83

Figure 36: Performance of the generated 17× 17 convolution and the Con-
volutionSeparable Example (Nvidia Toolkit)

causes the generated arithmetic expressions to become complex as
well because we use multiple views to flatten multidimensional array
indices as described in Section 4.1. As a last example, we examine the
fully optimized column convolution discussed in the previous chap-
ter. Since this is the most optimized low-level expression we discussed
in this thesis, the arithmetic expressions in the generated OpenCL are
the most complex we have observed for stencil applications so far.
Simplifying these expressions using basic rules of algebra achieves a
speedup of 55.4 for this example. This emphasizes the importance of
simplification during code generation.

To summarize, the more complex a particular low-level expression
is, the more complex are the arithmetic expressions generated in the
OpenCL Kernel code. Thus, simplifying them becomes non-negligible
for complex computations expressed with low-level primitives.

5.5 performance compared to nvidia toolkit example

Finally, we compare the performance of our generated kernels to the
performance of the Nvidia Toolkit example ConvolutionSeparable de-
scribed in [51]. This example implements a constant boundary han-
dling. Hence, on out-of-bound accesses it returns a constant value.
Since we currently do not support constant boundary handling, we
rewrote that part of the CUDA example to implement a clamp bound-
ary condition as defined in this thesis. We also confirmed that this
does not change the performance of the original kernel by measuring
a difference of 1% when executing the example with both boundary
conditions. Figure 34 shows the performance differences of the gen-
erated and handwritten column convolution kernels. The first gen-
erated kernel applies the same optimizations as the CUDA kernel.

84 evaluation

We executed both, the CUDA application and our generated con-
volution, using the exact same kernel launch configuration and tile
sizes. As visualized, the performance of both kernels matches as ex-
pected. Thus, applying the same optimizations (using a functional
expression) leads to the same performance. This shows, that we were
able to successfully formalize the optimization described in [51] using
our functional IL. Furthermore the compilation of such an expression
using our code generator results in an imperative OpenCL kernel
that has the same performance as the hand-tuned kernel by Nvidia.
As described in the previous chapter, this example introduces bank-
conflicts on modern GPUs like the Kepler K20c which we used to
conduct our experiments. By resolving these bank-conflicts we are
able to outperform Nvidia toolkit example achieving a speedup of
1.3. This emphasizes the flexibility of our approach to formalize opti-
mizations using functional primitives. Resolving these bank conflict
was just a matter of changing a numerical parameter for a single
primitive instead of making changes in low-level imperative code.

6
C O N C L U S I O N

In this thesis, we started by analyzing and decomposing the stencil
pattern into its fundamental algorithmic parts. For two of these parts
we introduced new high-level primitives slide and pad. Afterwards
we provided multiple examples of how to use these primitives and
the power of function composition to express several one- and multi-
dimensional stencil computations. Therefore, we provided a powerful
and flexible approach to express stencil computations by composing
intuitive and simple functional primitives.

In the subsequent chapter we analyzed and formalized well-known
optimizations for stencil computations. We began with lowering a
simple high-level expression into a low-level expression written in
LIFT’s IL. We incrementally applied several optimizations like over-
lapped tiling or utilizing local memory using a set of formal rewrite
rules. We proved that these rules are semantics preserving and ap-
plied them systematically to rewrite an expression into a more effi-
cient one. Doing this, we introduced a new low-level primitive in-
crease to avoid bank conflicts when using local memory, introduced
the mapSeqUnroll primitive to unroll loops and reused the high-level
primitive slide to apply overlapped tiling. We evaluated handwritten
OpenCL kernels to confirm that the applied optimizations indeed
improve performance. Comparing the naive version we started with,
with the most optimized version, we are able to improve the perfor-
mance by a factor of 41, emphasizing the necessity to optimize sten-
cil computations on GPUs. Afterwards we described the LIFT’s code
generation process and briefly discussed every compilation stage. We
introduced and discussed the extensions to LIFT’s view system used
to generate code for the newly introduced primitives.

Finally, we evaluated the performance of OpenCL kernels gener-
ated using the LIFT Framework. We incrementally rewrote expres-
sions and generated kernels after applying every optimization. The
performance of our generated kernels is competitive to the handwrit-
ten kernels introduced earlier. Some of these generated kernels show
further potential for improvements in terms of simplifying array ac-
cesses. As a last step we compared the performance of our generated
kernels to the performance of the Nvidia Toolkit convolutionSepara-
ble example. When generating a kernel that applies the same opti-
mization we achieve the same performance as the hand-tuned version
from Nvidia. Since the example introduces bank-conflicts on modern
GPUs we are able to outperform the Nvidia example by resolving all
of these bank-conflicts.

85

86 conclusion

To summarize, we achieve to generate high-performance OpenCL
kernel for stencil computations using the LIFT Framework. We pro-
vide a flexible programming framework achieving the same level of
abstraction as existing library approaches without relying on hard-
coded specialized solutions for multidimensional stencils. Using the
ideas of Backus, Bird, Cole and many more we are able to rewrite
functional expressions into more efficient expressions that eventually
are used to generate high-performance device-specific OpenCL ker-
nels.

A
A P P E N D I X

a.1 opencl kernels implementing optimizations for the

17 × 17 convolution

In the following we show all kernels used in Chapter 3 to obtain
performance numbers for specific optimizations.

1 kernel void KERNEL(const global float *restrict IN,

2 const global float *restrict W, global float *OUT) {

3

4 int gid1 = get_global_id(1);

5 int gid0 = get_global_id(0);

6 float acc = 0.0f;

7

8 for (int i = 0; i < 289; i++) {

9 int x = gid0 - 8 + (i % 17);

10 int y = gid1 - 8 + (i / 17);

11 x = max(0, x);

12 x = min(x, 4095);

13 y = max(0, y);

14 y = min(y, 4095);

15 acc = acc + (IN[x + 4095 * y] * W[i]);

16 }

17

18 OUT[(gid0 + (4095 * gid1))] = acc;

19 }

Listing 24: OpenCL kernel implementing a naive 17× 17 convolution

87

88 appendix

1 kernel void KERNEL(const global float *restrict IN,

2 const global float *restrict W, global float *OUT) {

3

4 local float L[1024];

5 float acc;

6 for (int wg1 = get_group_id(1); wg1 < 256; wg1 += 128) {

7 for (int wg0 = get_group_id(0); wg0 < 256; wg0 += 128) {

8

9 int lid1 = get_local_id(1);

10 int lid0 = get_local_id(0);

11

12 int x = wg0 * 32 + lid0 - 8;

13 int y = wg1 * 32 + lid1 - 8;

14 x = max(0, x);

15 y = max(0, y);

16 x = min(4095, x);

17 y = min(4095, y);

18

19 L[(lid0 + (32 * lid1))] = IN[y * 4096 + x];

20

21 barrier(CLK_LOCAL_MEM_FENCE);

22

23 if (get_local_id(1) < 16) {

24 int lid1 = get_local_id(1);

25

26 if (get_local_id(0) < 16) {

27 int lid0 = get_local_id(0);

28

29 acc = 0.0f;

30 for (int i = 0; i < 289; i++) {

31 int x = lid0 + (i % 17);

32 int y = lid1 + (i / 17);

33

34 acc = acc + (L[(x + 32 * y)] * W[i]);

35 }

36

37 int x = lid0 + (16 * wg0);

38 int y = lid1 + (16 * wg1);

39 OUT[x + 4096 * y] = acc;

40 }

41 }

42 barrier(CLK_GLOBAL_MEM_FENCE);

43 }

44 }

45 }

Listing 25: OpenCL kernel implementing 17× 17 convolution using local
memory

A.1 opencl kernels implementing optimizations for the 17 × 17 convolution 89

1 kernel void KERNEL(const global float *restrict IN,

2 const global float *restrict W, global float *OUT) {

3

4 local float L[1024];

5 float acc;

6 int wg1 = get_group_id(1);

7 int wg0 = get_group_id(0);

8

9 for (int lid1 = get_local_id(1); lid1 < 32; lid1 = (16 + lid1)) {

10 for (int lid0 = get_local_id(0); lid0 < 32; lid0 = (16 + lid0)) {

11

12 int x = wg0 * 32 + lid0 - 8;

13 int y = wg1 * 32 + lid1 - 8;

14 x = max(0, x);

15 y = max(0, y);

16 x = min(4095, x);

17 y = min(4095, y);

18

19 L[(lid0 + (32 * lid1))] = IN[y * 4096 + x];

20 }

21 }

22

23 barrier(CLK_LOCAL_MEM_FENCE);

24

25 int lid1 = get_local_id(1);

26 int lid0 = get_local_id(0);

27 acc = 0.0f;

28

29 for (int i = 0; i < 289; i++) {

30 int x = lid0 + (i % 17);

31 int y = lid1 + (i / 17);

32

33 acc = acc + (L[(x + 32 * y)] * W[i]);

34 }

35

36 int x = lid0 + (16 * wg0);

37 int y = lid1 + (16 * wg1);

38 OUT[x + 4096 * y] = acc;

39 }

Listing 26: OpenCL kernel implementing 17 × 17 convolution avoiding
idle threads

90 appendix

1 kernel void KERNEL(const global float *restrict IN,

2 const global float *restrict W, global float *OUT) {

3 float acc;

4 int gid1 = get_global_id(1);

5 int gid0 = get_global_id(0);

6 acc = 0.0f;

7

8 acc = acc + (IN[max(0, gid0 - 8) + 4096 * gid1] * W[0]);

9 acc = acc + (IN[max(0, gid0 - 7) + 4096 * gid1] * W[1]);

10 acc = acc + (IN[max(0, gid0 - 6) + 4096 * gid1] * W[2]);

11 acc = acc + (IN[max(0, gid0 - 5) + 4096 * gid1] * W[3]);

12 acc = acc + (IN[max(0, gid0 - 4) + 4096 * gid1] * W[4]);

13 acc = acc + (IN[max(0, gid0 - 3) + 4096 * gid1] * W[5]);

14 acc = acc + (IN[max(0, gid0 - 2) + 4096 * gid1] * W[6]);

15 acc = acc + (IN[max(0, gid0 - 1) + 4096 * gid1] * W[7]);

16 acc = acc + (IN[(gid0 + (4096 * gid1))] * W[8]);

17 acc = acc + (IN[min(4095, gid0 + 1) + 4096 * gid1] * W[9]);

18 acc = acc + (IN[min(4095, gid0 + 2) + 4096 * gid1] * W[10]);

19 acc = acc + (IN[min(4095, gid0 + 3) + 4096 * gid1] * W[11]);

20 acc = acc + (IN[min(4095, gid0 + 4) + 4096 * gid1] * W[12]);

21 acc = acc + (IN[min(4095, gid0 + 5) + 4096 * gid1] * W[13]);

22 acc = acc + (IN[min(4095, gid0 + 6) + 4096 * gid1] * W[14]);

23 acc = acc + (IN[min(4095, gid0 + 7) + 4096 * gid1] * W[15]);

24 acc = acc + (IN[min(4095, gid0 + 8) + 4096 * gid1] * W[16]);

25

26 OUT[(gid0 + (4096 * gid1))] = acc;

27 }

Listing 27: OpenCL kernel implementing 17-point row convolution

A.1 opencl kernels implementing optimizations for the 17 × 17 convolution 91

1 kernel void KERNEL(const global float *restrict IN,

2 const global float *restrict W, global float *OUT) {

3

4 float a;

5 int gid1 = get_global_id(1);

6 int gid0 = get_global_id(0);

7 a = 0.0f;

8

9 a=a+(IN[(gid0 + (4096 * (((-8 + gid1) >= 0) ? (-8 + gid1) : 0)))] * W[0]);

10 a=a+(IN[(gid0 + (4096 * (((-7 + gid1) >= 0) ? (-7 + gid1) : 0)))] * W[1]);

11 a=a+(IN[(gid0 + (4096 * (((-6 + gid1) >= 0) ? (-6 + gid1) : 0)))] * W[2]);

12 a=a+(IN[(gid0 + (4096 * (((-5 + gid1) >= 0) ? (-5 + gid1) : 0)))] * W[3]);

13 a=a+(IN[(gid0 + (4096 * (((-4 + gid1) >= 0) ? (-4 + gid1) : 0)))] * W[4]);

14 a=a+(IN[(gid0 + (4096 * (((-3 + gid1) >= 0) ? (-3 + gid1) : 0)))] * W[5]);

15 a=a+(IN[(gid0 + (4096 * (((-2 + gid1) >= 0) ? (-2 + gid1) : 0)))] * W[6]);

16 a=a+(IN[(gid0 + (4096 * (((-1 + gid1) >= 0) ? (-1 + gid1) : 0)))] * W[7]);

17 a=a+(IN[(gid0 + (4096 * gid1))] * W[8]);

18 a=a+(IN[(gid0 + (4096 * (((1 + gid1) < 4096) ? (1 + gid1) : 4095)))] * W[9]);

19 a=a+(IN[(gid0 + (4096 * (((2 + gid1) < 4096) ? (2 + gid1) : 4095)))] * W[10]);

20 a=a+(IN[(gid0 + (4096 * (((3 + gid1) < 4096) ? (3 + gid1) : 4095)))] * W[11]);

21 a=a+(IN[(gid0 + (4096 * (((4 + gid1) < 4096) ? (4 + gid1) : 4095)))] * W[12]);

22 a=a+(IN[(gid0 + (4096 * (((5 + gid1) < 4096) ? (5 + gid1) : 4095)))] * W[13]);

23 a=a+(IN[(gid0 + (4096 * (((6 + gid1) < 4096) ? (6 + gid1) : 4095)))] * W[14]);

24 a=a+(IN[(gid0 + (4096 * (((7 + gid1) < 4096) ? (7 + gid1) : 4095)))] * W[15]);

25 a=a+(IN[(gid0 + (4096 * (((8 + gid1) < 4096) ? (8 + gid1) : 4095)))] * W[16]);

26

27 OUT[(gid0 + (4096 * gid1))] = a;

28 }

Listing 28: OpenCL kernel implementing 17-point column convolution

92 appendix

1 kernel void KERNEL(const global float *restrict IN,

2 const global float *restrict W, global float *OUT) {

3

4 local float L[144];

5 float acc;

6 int wg1 = get_group_id(1);

7 int wg0 = get_group_id(0);

8 int lid1 = get_local_id(1);

9

10 for (int lid0 = get_local_id(0); lid0 < 144; lid0 = (16 + lid0)) {

11

12 int x = lid0 + (128 * wg0) - 8;

13 x = max(0, x);

14 x = min(4095, x);

15

16 L[lid0] = IN[x + 4096 * wg1];

17 }

18

19 barrier(CLK_LOCAL_MEM_FENCE);

20

21 for (int lid0 = get_local_id(0); lid0 < 128; lid0 = (16 + lid0)) {

22

23 acc = 0.0f;

24 acc = acc + (L[lid0] * W[0]);

25 acc = acc + (L[1 + lid0] * W[1]);

26 acc = acc + (L[2 + lid0] * W[2]);

27 acc = acc + (L[3 + lid0] * W[3]);

28 acc = acc + (L[4 + lid0] * W[4]);

29 acc = acc + (L[5 + lid0] * W[5]);

30 acc = acc + (L[6 + lid0] * W[6]);

31 acc = acc + (L[7 + lid0] * W[7]);

32 acc = acc + (L[8 + lid0] * W[8]);

33 acc = acc + (L[9 + lid0] * W[9]);

34 acc = acc + (L[10 + lid0] * W[10]);

35 acc = acc + (L[11 + lid0] * W[11]);

36 acc = acc + (L[12 + lid0] * W[12]);

37 acc = acc + (L[13 + lid0] * W[13]);

38 acc = acc + (L[14 + lid0] * W[14]);

39 acc = acc + (L[15 + lid0] * W[15]);

40 acc = acc + (L[16 + lid0] * W[16]);

41

42 OUT[(lid0 + (128 * wg0) + (4096 * wg1))] = acc;

43 }

44 }

Listing 29: OpenCL kernel implementing tiled 17-point row convolution

A.1 opencl kernels implementing optimizations for the 17 × 17 convolution 93

1 kernel void KERNEL(const global float *restrict IN,

2 const global float *restrict W, global float *OUT) {

3

4 local float L[80];

5 float acc;

6 int wg1 = get_group_id(1);

7 int wg0 = get_group_id(0);

8

9 for (int lid1 = get_local_id(1); lid1 < 80; lid1 = (8 + lid1)) {

10 int lid0 = get_local_id(0);

11 int y = (-8 + lid1 + (64 * wg1));

12 y = max(0, y);

13 y = min(4095, y);

14

15 L[lid1] = IN[(wg0 + (4096 * y))];

16 }

17

18 barrier(CLK_LOCAL_MEM_FENCE);

19

20 for (int lid1 = get_local_id(1); lid1 < 64; lid1 = (8 + lid1)) {

21

22 int lid0 = get_local_id(0);

23 acc = 0.0f;

24

25 acc = acc + (L[lid1] * W[0]);

26 acc = acc + (L[1 + lid1] * W[1]);

27 acc = acc + (L[2 + lid1] * W[2]);

28 acc = acc + (L[3 + lid1] * W[3]);

29 acc = acc + (L[4 + lid1] * W[4]);

30 acc = acc + (L[5 + lid1] * W[5]);

31 acc = acc + (L[6 + lid1] * W[6]);

32 acc = acc + (L[7 + lid1] * W[7]);

33 acc = acc + (L[8 + lid1] * W[8]);

34 acc = acc + (L[9 + lid1] * W[9]);

35 acc = acc + (L[10 + lid1] * W[10]);

36 acc = acc + (L[11 + lid1] * W[11]);

37 acc = acc + (L[12 + lid1] * W[12]);

38 acc = acc + (L[13 + lid1] * W[13]);

39 acc = acc + (L[14 + lid1] * W[14]);

40 acc = acc + (L[15 + lid1] * W[15]);

41 acc = acc + (L[16 + lid1] * W[16]);

42

43 OUT[(wg0 + 4096 * (lid1 + 64 * wg1))] = acc;

44 }

45 }

Listing 30: OpenCL kernel implementing tiled 17-point column convolu-
tion

94 appendix

1 kernel void KERNEL(const global float *restrict IN,

2 const global float *restrict W, global float *OUT) {

3

4 local float L[576];

5 float acc;

6 int wg1 = get_group_id(1);

7 int wg0 = get_group_id(0);

8 int lid1 = get_local_id(1);

9

10 for (int lid0 = get_local_id(0); lid0 < 144; lid0 = (16 + lid0)) {

11

12 int x = wg0 * 128 + lid0 - 8;

13 int y = wg1 * 4 + lid1;

14

15 x = max(0, x);

16 x = min(4095, x);

17

18 L[lid0 + (144 * lid1)] = IN[y * 4096 + x];

19 }

20

21 barrier(CLK_LOCAL_MEM_FENCE);

22

23 for (int lid0 = get_local_id(0); lid0 < 128; lid0 = (16 + lid0)) {

24 acc = 0.0f;

25

26 acc = acc + (L[(lid0 + (144 * lid1))] * W[0]);

27 acc = acc + (L[(1 + lid0 + (144 * lid1))] * W[1]);

28 acc = acc + (L[(2 + lid0 + (144 * lid1))] * W[2]);

29 acc = acc + (L[(3 + lid0 + (144 * lid1))] * W[3]);

30 acc = acc + (L[(4 + lid0 + (144 * lid1))] * W[4]);

31 acc = acc + (L[(5 + lid0 + (144 * lid1))] * W[5]);

32 acc = acc + (L[(6 + lid0 + (144 * lid1))] * W[6]);

33 acc = acc + (L[(7 + lid0 + (144 * lid1))] * W[7]);

34 acc = acc + (L[(8 + lid0 + (144 * lid1))] * W[8]);

35 acc = acc + (L[(9 + lid0 + (144 * lid1))] * W[9]);

36 acc = acc + (L[(10 + lid0 + (144 * lid1))] * W[10]);

37 acc = acc + (L[(11 + lid0 + (144 * lid1))] * W[11]);

38 acc = acc + (L[(12 + lid0 + (144 * lid1))] * W[12]);

39 acc = acc + (L[(13 + lid0 + (144 * lid1))] * W[13]);

40 acc = acc + (L[(14 + lid0 + (144 * lid1))] * W[14]);

41 acc = acc + (L[(15 + lid0 + (144 * lid1))] * W[15]);

42 acc = acc + (L[(16 + lid0 + (144 * lid1))] * W[16]);

43

44 int x = lid0 + 128 * wg0;

45 int y = lid1 + 4 * wg1;

46 OUT[x + 4096 * y] = acc;

47 }

48 }

Listing 31: OpenCL kernel implementing improved tiled 17-point row
convolution

A.1 opencl kernels implementing optimizations for the 17 × 17 convolution 95

1 kernel void KERNEL(const global float *restrict IN,

2 const global float *restrict W, global float *OUT) {

3

4 local float L[1280];

5 float acc;

6 int wg1 = get_group_id(1);

7 int wg0 = get_group_id(0);

8 for (int lid1 = get_local_id(1); lid1 < 80; lid1 = (8 + lid1)) {

9

10 int lid0 = get_local_id(0);

11 int x = wg0 * 16 + lid0;

12 int y = wg1 * 64 + lid1 - 8;

13

14 y = max(0, y);

15 y = min(4095, y);

16

17 L[(lid0 + (16 * lid1))] = IN[y * 4096 + x];

18 }

19

20 barrier(CLK_LOCAL_MEM_FENCE);

21

22 for (int lid1 = get_local_id(1); lid1 < 64; lid1 = (8 + lid1)) {

23 int lid0 = get_local_id(0);

24 acc = 0.0f;

25

26 acc = acc + (L[(lid0 + (16 * lid1))] * W[0]);

27 acc = acc + (L[(16 + lid0 + (16 * lid1))] * W[1]);

28 acc = acc + (L[(32 + lid0 + (16 * lid1))] * W[2]);

29 acc = acc + (L[(48 + lid0 + (16 * lid1))] * W[3]);

30 acc = acc + (L[(64 + lid0 + (16 * lid1))] * W[4]);

31 acc = acc + (L[(80 + lid0 + (16 * lid1))] * W[5]);

32 acc = acc + (L[(96 + lid0 + (16 * lid1))] * W[6]);

33 acc = acc + (L[(112 + lid0 + (16 * lid1))] * W[7]);

34 acc = acc + (L[(128 + lid0 + (16 * lid1))] * W[8]);

35 acc = acc + (L[(144 + lid0 + (16 * lid1))] * W[9]);

36 acc = acc + (L[(160 + lid0 + (16 * lid1))] * W[10]);

37 acc = acc + (L[(176 + lid0 + (16 * lid1))] * W[11]);

38 acc = acc + (L[(192 + lid0 + (16 * lid1))] * W[12]);

39 acc = acc + (L[(208 + lid0 + (16 * lid1))] * W[13]);

40 acc = acc + (L[(224 + lid0 + (16 * lid1))] * W[14]);

41 acc = acc + (L[(240 + lid0 + (16 * lid1))] * W[15]);

42 acc = acc + (L[(256 + lid0 + (16 * lid1))] * W[16]);

43

44 int x = lid0 + 16 * wg0;

45 int y = lid1 + 64 * wg1;

46 OUT[x + 4096 * y] = acc;

47 }

48 }

Listing 32: OpenCL kernel implementing improved tiled 17-point column
convolution

96 appendix

1 kernel void KERNEL(const global float *restrict IN,

2 const global float *restrict W, global float *OUT) {

3

4 local float L[1280];

5 float acc;

6 int wg1 = get_group_id(1);

7 int wg0 = get_group_id(0);

8 int lid0 = get_local_id(0);

9

10 for (int lid1 = get_local_id(1); lid1 < 80; lid1 = (8 + lid1)) {

11 int x = lid0 + (16 * wg0);

12 int y = (-8 + lid1 + (64 * wg1));

13 y = max(0, y);

14 y = min(4095, y);

15

16 L[lid1 + (80 * lid0)] = IN[x + (4096 * y)];

17 }

18

19 barrier(CLK_LOCAL_MEM_FENCE);

20

21 for (int lid1 = get_local_id(1); lid1 < 64; lid1 = (8 + lid1)) {

22 int lid0 = get_local_id(0);

23 acc = 0.0f;

24

25 // clang-format off

26 acc = acc + (L[(lid1 + (80 * lid0))] * W[0]);

27 acc = acc + (L[(1 + lid1 + (80 * lid0))] * W[1]);

28 acc = acc + (L[(2 + lid1 + (80 * lid0))] * W[2]);

29 acc = acc + (L[(3 + lid1 + (80 * lid0))] * W[3]);

30 acc = acc + (L[(4 + lid1 + (80 * lid0))] * W[4]);

31 acc = acc + (L[(5 + lid1 + (80 * lid0))] * W[5]);

32 acc = acc + (L[(6 + lid1 + (80 * lid0))] * W[6]);

33 acc = acc + (L[(7 + lid1 + (80 * lid0))] * W[7]);

34 acc = acc + (L[(8 + lid1 + (80 * lid0))] * W[8]);

35 acc = acc + (L[(9 + lid1 + (80 * lid0))] * W[9]);

36 acc = acc + (L[(10 + lid1 + (80 * lid0))] * W[10]);

37 acc = acc + (L[(11 + lid1 + (80 * lid0))] * W[11]);

38 acc = acc + (L[(12 + lid1 + (80 * lid0))] * W[12]);

39 acc = acc + (L[(13 + lid1 + (80 * lid0))] * W[13]);

40 acc = acc + (L[(14 + lid1 + (80 * lid0))] * W[14]);

41 acc = acc + (L[(15 + lid1 + (80 * lid0))] * W[15]);

42 acc = acc + (L[(16 + lid1 + (80 * lid0))] * W[16]);

43 // clang-format on

44

45 int x = lid0 + 16 * wg0;

46 int y = lid1 + 64 * wg1;

47 OUT[x + 4096 * y] = acc;

48 }

49 }

Listing 33: OpenCL kernel implementing transposed tile 17-point column
convolution

A.1 opencl kernels implementing optimizations for the 17 × 17 convolution 97

1 kernel void KERNEL(const global float *restrict IN,

2 const global float *restrict W, global float *OUT) {

3

4 local float L[1296];

5 float acc;

6 int wg1 = get_group_id(1);

7 int wg0 = get_group_id(0);

8 int lid0 = get_local_id(0);

9

10 for (int lid1 = get_local_id(1); lid1 < 80; lid1 = (8 + lid1)) {

11 int x = lid0 + (16 * wg0);

12 int y = (-8 + lid1 + (64 * wg1));

13 y = max(0, y);

14 y = min(4095, y);

15

16 L[lid1 + (81 * lid0)] = IN[x + (4096 * y)];

17 }

18

19 barrier(CLK_LOCAL_MEM_FENCE);

20

21 for (int lid1 = get_local_id(1); lid1 < 64; lid1 = (8 + lid1)) {

22 int lid0 = get_local_id(0);

23 acc = 0.0f;

24

25 acc = acc + (L[(lid1 + (81 * lid0))] * W[0]);

26 acc = acc + (L[(1 + lid1 + (81 * lid0))] * W[1]);

27 acc = acc + (L[(2 + lid1 + (81 * lid0))] * W[2]);

28 acc = acc + (L[(3 + lid1 + (81 * lid0))] * W[3]);

29 acc = acc + (L[(4 + lid1 + (81 * lid0))] * W[4]);

30 acc = acc + (L[(5 + lid1 + (81 * lid0))] * W[5]);

31 acc = acc + (L[(6 + lid1 + (81 * lid0))] * W[6]);

32 acc = acc + (L[(7 + lid1 + (81 * lid0))] * W[7]);

33 acc = acc + (L[(8 + lid1 + (81 * lid0))] * W[8]);

34 acc = acc + (L[(9 + lid1 + (81 * lid0))] * W[9]);

35 acc = acc + (L[(10 + lid1 + (81 * lid0))] * W[10]);

36 acc = acc + (L[(11 + lid1 + (81 * lid0))] * W[11]);

37 acc = acc + (L[(12 + lid1 + (81 * lid0))] * W[12]);

38 acc = acc + (L[(13 + lid1 + (81 * lid0))] * W[13]);

39 acc = acc + (L[(14 + lid1 + (81 * lid0))] * W[14]);

40 acc = acc + (L[(15 + lid1 + (81 * lid0))] * W[15]);

41 acc = acc + (L[(16 + lid1 + (81 * lid0))] * W[16]);

42

43 int x = lid0 + 16 * wg0;

44 int y = lid1 + 64 * wg1;

45 OUT[x + 4096 * y] = acc;

46 }

47 }

Listing 34: OpenCL kernel implementing inreased transposed tile 17-
point column convolution

98 appendix

1 kernel void KERNEL(const global float *restrict IN,

2 const global float *restrict W, global float *OUT) {

3

4 local float L[1312];

5 float acc;

6 int wg1 = get_group_id(1);

7 int wg0 = get_group_id(0);

8 int lid0 = get_local_id(0);

9

10 for (int lid1 = get_local_id(1); lid1 < 80; lid1 = (8 + lid1)) {

11 int x = lid0 + (16 * wg0);

12 int y = (-8 + lid1 + (64 * wg1));

13 y = max(0, y);

14 y = min(4095, y);

15

16 L[lid1 + (82 * lid0)] = IN[x + (4096 * y)];

17 }

18

19 barrier(CLK_LOCAL_MEM_FENCE);

20

21 for (int lid1 = get_local_id(1); lid1 < 64; lid1 = (8 + lid1)) {

22 int lid0 = get_local_id(0);

23 acc = 0.0f;

24

25 acc = acc + (L[(lid1 + (82 * lid0))] * W[0]);

26 acc = acc + (L[(1 + lid1 + (82 * lid0))] * W[1]);

27 acc = acc + (L[(2 + lid1 + (82 * lid0))] * W[2]);

28 acc = acc + (L[(3 + lid1 + (82 * lid0))] * W[3]);

29 acc = acc + (L[(4 + lid1 + (82 * lid0))] * W[4]);

30 acc = acc + (L[(5 + lid1 + (82 * lid0))] * W[5]);

31 acc = acc + (L[(6 + lid1 + (82 * lid0))] * W[6]);

32 acc = acc + (L[(7 + lid1 + (82 * lid0))] * W[7]);

33 acc = acc + (L[(8 + lid1 + (82 * lid0))] * W[8]);

34 acc = acc + (L[(9 + lid1 + (82 * lid0))] * W[9]);

35 acc = acc + (L[(10 + lid1 + (82 * lid0))] * W[10]);

36 acc = acc + (L[(11 + lid1 + (82 * lid0))] * W[11]);

37 acc = acc + (L[(12 + lid1 + (82 * lid0))] * W[12]);

38 acc = acc + (L[(13 + lid1 + (82 * lid0))] * W[13]);

39 acc = acc + (L[(14 + lid1 + (82 * lid0))] * W[14]);

40 acc = acc + (L[(15 + lid1 + (82 * lid0))] * W[15]);

41 acc = acc + (L[(16 + lid1 + (82 * lid0))] * W[16]);

42

43 int x = lid0 + 16 * wg0;

44 int y = lid1 + 64 * wg1;

45 OUT[x + 4096 * y] = acc;

46 }

47 }

Listing 35: OpenCL kernel implementing wider increased transposed tile
17-point column convolution

A.1 opencl kernels implementing optimizations for the 17 × 17 convolution 99

1 kernel void KERNEL(const global float *restrict IN,

2 const global float *restrict W, global float *OUT) {

3

4 local float L[1312];

5 float acc;

6 int wg1 = get_group_id(1);

7 int wg0 = get_group_id(0);

8 int lid0 = get_local_id(0);

9 int lid1 = get_local_id(1);

10 int x = lid0 + (16 * wg0);

11 int y = lid1 + (64 * wg1);

12

13 int upperHalo = max(0, (y -8));

14 int lowerHalo = min(4095, (y+64));

15

16 L[(lid1 + (82 * lid0))] = IN[(4096 * upperHalo) + x];

17 L[(8 + lid1 + (82 * lid0))] = IN[(4096 * y) + x];

18 L[(16 + lid1 + (82 * lid0))] = IN[(4096 * (y + 8)) + x];

19 L[(24 + lid1 + (82 * lid0))] = IN[(4096 * (y + 16)) + x];

20 L[(32 + lid1 + (82 * lid0))] = IN[(4096 * (y + 24)) + x];

21 L[(40 + lid1 + (82 * lid0))] = IN[(4096 * (y + 32)) + x];

22 L[(48 + lid1 + (82 * lid0))] = IN[(4096 * (y + 40)) + x];

23 L[(56 + lid1 + (82 * lid0))] = IN[(4096 * (y + 48)) + x];

24 L[(64 + lid1 + (82 * lid0))] = IN[(4096 * (y + 56)) + x];

25 L[(72 + lid1 + (82 * lid0))] = IN[(4096 * lowerHalo) + x];

26

27 barrier(CLK_LOCAL_MEM_FENCE);

28

29 for (int lid1 = get_local_id(1); lid1 < 64; lid1 = (8 + lid1)) {

30

31 int lid0 = get_local_id(0);

32 acc = 0.0f;

33

34 acc = acc + (L[(lid1 + (82 * lid0))] * W[0]);

35 acc = acc + (L[(1 + lid1 + (82 * lid0))] * W[1]);

36 acc = acc + (L[(2 + lid1 + (82 * lid0))] * W[2]);

37 acc = acc + (L[(3 + lid1 + (82 * lid0))] * W[3]);

38 acc = acc + (L[(4 + lid1 + (82 * lid0))] * W[4]);

39 acc = acc + (L[(5 + lid1 + (82 * lid0))] * W[5]);

40 acc = acc + (L[(6 + lid1 + (82 * lid0))] * W[6]);

41 acc = acc + (L[(7 + lid1 + (82 * lid0))] * W[7]);

42 acc = acc + (L[(8 + lid1 + (82 * lid0))] * W[8]);

43 acc = acc + (L[(9 + lid1 + (82 * lid0))] * W[9]);

44 acc = acc + (L[(10 + lid1 + (82 * lid0))] * W[10]);

45 acc = acc + (L[(11 + lid1 + (82 * lid0))] * W[11]);

46 acc = acc + (L[(12 + lid1 + (82 * lid0))] * W[12]);

47 acc = acc + (L[(13 + lid1 + (82 * lid0))] * W[13]);

48 acc = acc + (L[(14 + lid1 + (82 * lid0))] * W[14]);

49 acc = acc + (L[(15 + lid1 + (82 * lid0))] * W[15]);

50 acc = acc + (L[(16 + lid1 + (82 * lid0))] * W[16]);

51

52 int x = lid0 + 16 * wg0;

53 int y = lid1 + 64 * wg1;

54 OUT[x + 4096 * y] = acc;

55 }

56 }

Listing 36: OpenCL kernel implementing wider increased transposed tile
17-point column convolution

100 appendix

a.2 correctness proofs for rewrite rules

In this section, we give proofs for several rewrite rules used in this
thesis.

proof a .2 .1 (overlapped tiling rule): Let xs = [x1, . . . , xm].

(join ◦map(slide n s) ◦ slide u v) xs

(definition of slide)

= (join ◦map(slide n s)) [T1, . . . , Tp]

where p =
m− u+ v

v

and Ti = [t(i,1), . . . , t(i,u)], t(i,j) = x(i−1)v+j

(16)

(definition of map)

= join [slide n s T1, . . . , slide n s Tp]

(definition of slide)

slide n s Ti
= slide n s [t(i,1), . . . , t(i,u)]

= [W(i,1), . . . ,W(i,q)]

where q =
u−n+ s

s
(17)

and W(i,k) = [w(i,k,1), . . . ,w(i,k,n)], (18)

w(i,k,j) = t(i,(k−1)s+j) (19)

= join [[W(1,1), . . . ,W(1,q)], . . . , [W(p,1), . . . ,W(p,q)]]

(definition of join)

= [W(1,1),W(1,2), . . . ,W(p,q)]

(using Equation 18)

=[[w(1,1,1), . . . ,w(1,1,n)],

[w(1,2,1), . . . ,w(1,2,n)],

. . . ,

[w(p,q,1), . . . ,w(p,q,n)]]

A.3 systematical rewriting of functional expressions 101

(using Equation 19 and Equation 17)

=[[t(1,1), . . . , t(1,n)],

[t(1,s+1), . . . , t(1,s+n)],

. . . ,

[t(p,u−n), . . . , t(p,u)]]

(using Equation 16)

= [[x1, . . . , xn], [x(s+1), . . . , xs+n], . . . , [xm−n, . . . , xm]]

(definition of slide)

= slide n s [x1, . . . , xm]

proof a .2 .2 (map-join reorder rule): hidden text to end line uhh
Let xs = [[x1, . . . , xk], [xk+1, . . . , x2k], . . . , [xn−k, . . . , xn]]

(join ◦map(map f)) xs

(definition of map)

= join [map f [x1, . . . , xk],

map f [xk+1, . . . , x2k],

. . . ,

map f [xn−k, . . . , xn]]

(definition of map)

= join [[f x1, . . . , f xk],

[f xk+1, . . . , f x2k],

. . . ,

[f xn−k, . . . , f xn]]

(definition of join)

= [f x1, f x2, . . . , f xn]

(definition of map)

= map f xs

a.3 systematical rewriting of functional expressions

In the following we transform the expression shown in Listing 5 to
the expression shown in Listing 6 using rewrite rules:

102 appendix

example a .1 (loading tiles to local memory):

λ b weights input .

(mapWorkgroup1(mapWorkgroup0(λ tile .

(mapLocal1(mapLocal0(λ nbh .

(reduceSeq (+) 0 ◦mapSeq (∗) ◦ zip) (join nbh) weights)) ◦
slide2d 17 1) tile)) ◦

slide2d 32 16 ◦ pad2d 8 8 b) input

(using the identity three times - Rewrite Rule 6)

λ b weights input .

(mapWorkgroup1(mapWorkgroup0(λ tile .

(mapLocal1(mapLocal0(λ nbh .

(map id ◦
reduceSeq (+) 0 ◦mapSeq (∗) ◦ zip) (join nbh) weights)) ◦

slide2d 17 1) tile)) ◦
map(map id) ◦

slide2d 32 16 ◦ pad2d 8 8 b) input

(using the low-level map rule three times - Rewrite Rule 1)

λ b weights input .

(mapWorkgroup1(mapWorkgroup0(λ tile .

(mapLocal1(mapLocal0(λ nbh .

(mapSeq id ◦
reduceSeq (+) 0 ◦mapSeq (∗) ◦ zip) (join nbh) weights))◦

slide2d 17 1) tile)) ◦
mapLocal1(mapLocal0 id) ◦

slide2d 32 16 ◦ pad2d 8 8 b) input

(using the global and local memory rule - Rewrite Rule 7)

λ b weights input .

(mapWorkgroup1(mapWorkgroup0(λ tile .

(mapLocal1(mapLocal0(λ nbh .

(toGlobal(mapSeq id) ◦
reduceSeq (+) 0 ◦mapSeq (∗) ◦ zip) (join nbh) weights)) ◦

slide2d 17 1) tile)) ◦
toLocal(mapLocal1(mapLocal0 id)) ◦

slide2d 32 16 ◦ pad2d 8 8 b) input

B I B L I O G R A P H Y

[1] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph
James Gebis, Parry Husbands, Kurt Keutzer, David A Patterson,
William Lester Plishker, John Shalf, Samuel Webb Williams, et
al. The landscape of parallel computing research: A view from berkeley.
Tech. rep. University of California, Berkeley, 2006.

[2] Olivier Aumage, Denis Barthou, and Alexandre Honorat. “A
Stencil DSEL for Single Code Accelerated Computing with SYCL.”
In: SYCL 2016 1st SYCL Programming Workshop during the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. 2016.

[3] John Backus. “Can programming be liberated from the von
Neumann style?: a functional style and its algebra of programs.”
In: Communications of the ACM 21.8 (1978), pp. 613–641.

[4] Peter Bastian, Markus Blatt, Christian Engwer, Andreas Dedner,
Robert Klöfkorn, S Kuttanikkad, Mario Ohlberger, and Oliver
Sander. “The distributed and unified numerics environment
(DUNE).” In: Proc. of the 19th Symposium on Simulation Technique
in Hannover. 2006.

[5] Anne Benoit, Murray Cole, Stephen Gilmore, and Jane Hillston.
“Flexible skeletal programming with eSkel.” In: European Con-
ference on Parallel Processing. Springer. 2005, pp. 761–770.

[6] Mauro Bianco and Ugo Varetto. “A generic library for stencil
computations.” In: arXiv preprint arXiv:1207.1746 (2012).

[7] Richard S Bird. “An introduction to the theory of lists.” In: Logic
of programming and calculi of discrete design. 1987, pp. 5–42.

[8] Richard S Bird. “Lectures on constructive functional program-
ming.” In: Constructive Methods in Computing Science. Springer,
1989, pp. 151–217.

[9] Rainer Bleck, Claes Rooth, Dingming Hu, and Linda T Smith.
“Salinity-driven thermocline transients in a wind-and thermohaline-
forced isopycnic coordinate model of the North Atlantic.” In:
Journal of Physical Oceanography 22.12 (1992), pp. 1486–1505.

[10] Tobias Brandvik and Graham Pullan. “SBLOCK: A framework
for efficient stencil-based PDE solvers on multi-core platforms.”
In: Computer and Information Technology (CIT), 2010 IEEE 10th
International Conference on. IEEE. 2010, pp. 1181–1188.

103

104 Bibliography

[11] Stefan Breuer, Michel Steuwer, and Sergei Gorlatch. “Extending
the SkelCL Skeleton Library for Stencil Computations on Multi-
GPU Systems.” In: Proceedings of the 1st International Workshop
on High-Performance Stencil Computations. 2014, pp. 15–21.

[12] John Canny. “A computational approach to edge detection.”
In: IEEE Transactions on pattern analysis and machine intelligence 6

(1986), pp. 679–698.

[13] Manuel MT Chakravarty, Gabriele Keller, Sean Lee, Trevor L
McDonell, and Vinod Grover. “Accelerating Haskell array codes
with multicore GPUs.” In: Proceedings of the sixth workshop on
Declarative aspects of multicore programming. ACM. 2011, pp. 3–
14.

[14] Milosz Ciznicki, Michal Kulczewski, Piotr Kopta, and Krzysztof
Kurowski. “Scaling the GCR Solver Using a High-Level Stencil
Framework on Multi-and Many-Core Architectures.” In: Paral-
lel Processing and Applied Mathematics. Springer, 2016, pp. 594–
606.

[15] Murray I Cole. “Algorithmic skeletons: A structured approach
to the management of parallel computation.” PhD thesis. Uni-
versity of Edinburgh, 1988.

[16] Murray Cole. “Bringing skeletons out of the closet: a pragmatic
manifesto for skeletal parallel programming.” In: Parallel com-
puting 30.3 (2004), pp. 389–406.

[17] Usman Dastgeer and Christoph Kessler. “A performance-portable
generic component for 2D convolution computations on GPU-
based systems.” In: Proc. MULTIPROG-2012 Workshop at HiPEAC-
2012, Paris. 2012, pp. 1–12.

[18] Edsger W Dijkstra. “The humble programmer.” In: Communica-
tions of the ACM 15.10 (1972), pp. 859–866.

[19] Fabian Dütsch, Karim Djelassi, Michael Haidl, and Sergei Gor-
latch. “HLSF: A High-Level; C++-Based Framework for Sten-
cil Computations on Accelerators.” In: Proceedings of the Second
Workshop on Optimizing Stencil Computations. ACM. 2014, pp. 41–
4.

[20] Johan Enmyren and Christoph W. Kessler. “SkePU: A Multi-
backend Skeleton Programming Library for multi-GPU Systems.”
In: Proceedings of the Fourth International Workshop on High-level
Parallel Programming and Applications. HLPP ’10. ACM, 2010,
pp. 5–14.

[21] Thomas L Falch and Anne C Elster. “ImageCL: An Image Pro-
cessing Language for Performance Portability on Heterogeneous
Systems.” In: arXiv preprint arXiv:1605.06399 (2016).

Bibliography 105

[22] Matteo Frigo and Volker Strumpen. “Cache oblivious stencil
computations.” In: Proceedings of the 19th annual international con-
ference on Supercomputing. ACM. 2005, pp. 361–366.

[23] Joseph D Garvey. “Automatic Performance Tuning of Stencil
Computations on Graphics Processing Units.” PhD thesis. Uni-
versity of Toronto, 2015.

[24] Sergei Gorlatch. “Send-Recv considered harmful? Myths and
truths about parallel programming.” In: International Conference
on Parallel Computing Technologies. Springer. 2001, pp. 243–257.

[25] Tobias Grosser, Albert Cohen, Paul HJ Kelly, J Ramanujam, P
Sadayappan, and Sven Verdoolaege. “Split tiling for GPUs: au-
tomatic parallelization using trapezoidal tiles.” In: Proceedings
of the 6th Workshop on General Purpose Processor Using Graphics
Processing Units. ACM. 2013, pp. 24–31.

[26] Tobias Grosser, Sven Verdoolaege, Albert Cohen, and P Sadayap-
pan. “The relation between diamond tiling and hexagonal tiling.”
In: Parallel Processing Letters 24.03 (2014).

[27] Jia Guo, Ganesh Bikshandi, Basilio B Fraguela, and David Padua.
“Writing productive stencil codes with overlapped tiling.” In:
Concurrency and Computation: Practice and Experience 21.1 (2009),
pp. 25–39.

[28] Adam Harries, Michel Steuwer, Murray Cole, Alan Gray, and
Christophe Dubach. “Compositional Compilation for Sparse, Ir-
regular Data Parallelism.” In: Workshop on High-Level Program-
ming for Heterogeneous and Hierarchical Parallel Systems (HLPGPU)
2016 @ HiPEAC, Prague, Czech Republic, January 19, 2016. Jan.
2016.

[29] Tom Henretty, Richard Veras, Franz Franchetti, Louis-Noël Pouchet,
Jagannathan Ramanujam, and Ponnuswamy Sadayappan. “A
stencil compiler for short-vector SIMD architectures.” In: Pro-
ceedings of the 27th international ACM conference on International
conference on supercomputing. ACM. 2013, pp. 13–24.

[30] Shoaib Kamil. “A generalized framework for auto-tuning sten-
cil computations.” In: Lawrence Berkeley National Laboratory (2009).

[31] Shoaib Kamil, Cy Chan, Leonid Oliker, John Shalf, and Samuel
Williams. “An auto-tuning framework for parallel multicore
stencil computations.” In: Parallel & Distributed Processing (IPDPS),
2010 IEEE International Symposium on. IEEE. 2010, pp. 1–12.

[32] Shoaib Kamil, Derrick Coetzee, Scott Beamer, Henry Cook, Eka-
terina Gonina, Jonathan Harper, Jeffrey Morlan, and Armando
Fox. “Portable parallel performance from sequential, produc-
tive, embedded domain-specific languages.” In: ACM SIGPLAN
Notices. Vol. 47. 8. ACM. 2012, pp. 303–304.

106 Bibliography

[33] John F Karpovich, Matthew Judd, W Timothy Strayer, and An-
drew S Grimshaw. “A parallel object-oriented framework for
stencil algorithms.” In: High Performance Distributed Computing,
1993., Proceedings the 2nd International Symposium on. IEEE. 1993,
pp. 34–41.

[34] John F Karpovich, Matthew Judd, W Timothy Strayer, and An-
drew S Grimshaw. “A parallel object-oriented framework for
stencil algorithms.” In: High Performance Distributed Computing,
1993., Proceedings the 2nd International Symposium on. IEEE. 1993,
pp. 34–41.

[35] DaeGon Kim, Lakshminarayanan Renganarayanan, Dave Ros-
tron, Sanjay Rajopadhye, and Michelle Mills Strout. “Multi-level
tiling: M for the price of one.” In: Proceedings of the 2007 ACM/IEEE
conference on Supercomputing. ACM. 2007, p. 51.

[36] Herbert Kuchen. “A skeleton library.” In: European Conference
on Parallel Processing. Springer. 2002, pp. 620–629.

[37] Michael Lesniak. “PASTHA: parallelizing stencil calculations in
Haskell.” In: Proceedings of the 5th ACM SIGPLAN workshop on
Declarative aspects of multicore programming. ACM. 2010, pp. 5–
14.

[38] Ben Lippmeier and Gabriele Keller. “Efficient parallel stencil
convolution in Haskell.” In: ACM SIGPLAN Notices 46.12 (2012),
pp. 59–70.

[39] Rita Loogen, Yolanda Ortega-Mallén, and Ricardo Peña-Marí.
“Parallel functional programming in Eden.” In: Journal of Func-
tional Programming 15.03 (2005), pp. 431–475.

[40] Tareq Malas, Georg Hager, Hatem Ltaief, and David Keyes.
“Multi-dimensional intra-tile parallelization for memory-starved
stencil computations.” In: arXiv preprint arXiv:1510.04995 (2015).

[41] Azamat Mametjanov, Daniel Lowell, Ching-Chen Ma, and Boy-
ana Norris. “Autotuning stencil-based computations on GPUs.”
In: 2012 IEEE international conference on cluster computing. IEEE.
2012, pp. 266–274.

[42] Naoya Maruyama and Takayuki Aoki. “Optimizing stencil com-
putations for NVIDIA Kepler GPUs.” In: Proceedings of the 1st
International Workshop on High-Performance Stencil Computations,
Vienna. 2014, pp. 89–95.

[43] Naoya Maruyama, Kento Sato, Tatsuo Nomura, and Satoshi
Matsuoka. “Physis: an implicitly parallel programming model
for stencil computations on large-scale GPU-accelerated super-
computers.” In: 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE. 2011,
pp. 1–12.

Bibliography 107

[44] Trevor L McDonell, Manuel MT Chakravarty, Gabriele Keller,
and Ben Lippmeier. “Optimising purely functional GPU pro-
grams.” In: ACM SIGPLAN Notices 48.9 (2013), pp. 49–60.

[45] AC McKellar and Edward G Coffman Jr. “Organizing matrices
and matrix operations for paged memory systems.” In: Commu-
nications of the ACM 12.3 (1969), pp. 153–165.

[46] Richard Membarth, Frank Hannig, Jürgen Teich, and Harald
Köstler. “Towards domain-specific computing for stencil codes
in HPC.” In: High Performance Computing, Networking, Storage
and Analysis (SCC), 2012 SC Companion: IEEE. 2012, pp. 1133–
1138.

[47] Cole Murray. Algorithmic skeletons: structured management of par-
allel computation. 1989.

[48] Anthony Nguyen, Nadathur Satish, Jatin Chhugani, Changkyu
Kim, and Pradeep Dubey. “3.5-D blocking optimization for sten-
cil computations on modern CPUs and GPUs.” In: Proceedings of
the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Computer So-
ciety. 2010, pp. 1–13.

[49] Dominic Orchard and Alan Mycroft. “Efficient and Correct Sten-
cil Computation via Pattern Matching and Static Typing.” In:
arXiv preprint arXiv:1109.0777 (2011).

[50] Alyson D Pereira, Luiz Ramos, and Luís FW Góes. “PSkel: A
stencil programming framework for CPU-GPU systems.” In:
Concurrency and Computation: Practice and Experience 27.17 (2015),
pp. 4938–4953.

[51] Victor Podlozhnyuk. “Image convolution with CUDA.” In: NVIDIA
Corporation white paper, June 2097.3 (2007).

[52] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Syl-
vain Paris, Frédo Durand, and Saman Amarasinghe. “Halide: a
language and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines.” In: ACM SIG-
PLAN Notices 48.6 (2013), pp. 519–530.

[53] Toomas Remmelg, Thibaut Lutz, Michel Steuwer, and Christophe
Dubach. “Performance portable GPU code generation for ma-
trix multiplication.” In: Proceedings of the 9th Annual Workshop on
General Purpose Processing using Graphics Processing Unit. ACM.
2016, pp. 22–31.

[54] Lakshminarayanan Renganarayana, Manjukumar Harthikote-Matha,
Rinku Dewri, and Sanjay Rajopadhye. “Towards optimal multi-
level tiling for stencil computations.” In: 2007 IEEE International
Parallel and Distributed Processing Symposium. IEEE. 2007, pp. 1–
10.

108 Bibliography

[55] Takashi Shimokawabe, Takayuki Aoki, and Naoyuki Onodera.
“High-productivity Framework for Large-scale GPU/CPU Sten-
cil Applications.” In: Procedia Computer Science 80 (2016), pp. 1646–
1657.

[56] Irwin Sobel and Gary Feldman. “A 3x3 isotropic gradient op-
erator for image processing.” In: a talk at the Stanford Artificial
Project in (1968), pp. 271–272.

[57] Michel Steuwer. “Improving Programmability and Performance
Portability on Many-Core Processors.” PhD thesis. 2015.

[58] Michel Steuwer, Christian Fensch, and Christophe Dubach. “Pat-
terns and Rewrite Rules for Systematic Code Generation (From
High-Level Functional Patterns to High-Performance OpenCL
Code).” In: arXiv preprint arXiv:1502.02389 (2015).

[59] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. “Skelcl-
a portable skeleton library for high-level gpu programming.”
In: Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on. IEEE. 2011,
pp. 1176–1182.

[60] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe
Dubach. “Generating Performance Portable Code using Rewrite
Rules.” In: ICFP. 2015.

[61] Michelle Mills Strout. “Compilers for Regular and Irregular
Stencils: Some Shared Problems and Solutions.” In: Proceedings
of Workshop on Optimizing Stencil Computations (WOSC). 2013.

[62] Robert Strzodka, Mohammed Shaheen, Dawid Pajak, and Hans-
Peter Seidel. “Cache accurate time skewing in iterative stencil
computations.” In: 2011 International Conference on Parallel Pro-
cessing. IEEE. 2011, pp. 571–581.

[63] Markus Stuermer and U Ruede. “A framework that supports
in writing performance-optimized stencil-based codes.” In: Uni-
versität Erlangen-Nürnberg, Tech. Rep (2010), pp. 10–5.

[64] Arvind K Sujeeth, Kevin J Brown, Hyoukjoong Lee, Tiark Rompf,
Hassan Chafi, Martin Odersky, and Kunle Olukotun. “Delite:
A compiler architecture for performance-oriented embedded
domain-specific languages.” In: ACM Transactions on Embedded
Computing Systems (TECS) 13.4s (2014), p. 134.

[65] Yuan Tang, Rezaul Alam Chowdhury, Bradley C Kuszmaul,
Chi-Keung Luk, and Charles E Leiserson. “The pochoir stencil
compiler.” In: Proceedings of the twenty-third annual ACM sym-
posium on Parallelism in algorithms and architectures. ACM. 2011,
pp. 117–128.

Bibliography 109

[66] Abhishek Udupa, R Govindarajan, and Matthew J Thazhuthaveetil.
“Software pipelined execution of stream programs on GPUs.”
In: Code Generation and Optimization, 2009. CGO 2009. Interna-
tional Symposium on. IEEE. 2009, pp. 200–209.

[67] Didem Unat, Xing Cai, and Scott B Baden. “Mint: realizing
CUDA performance in 3D stencil methods with annotated C.”
In: Proceedings of the international conference on Supercomputing.
ACM. 2011, pp. 214–224.

[68] Gerhard Wellein, Georg Hager, Thomas Zeiser, Markus Wittmann,
and Holger Fehske. “Efficient temporal blocking for stencil com-
putations by multicore-aware wavefront parallelization.” In: 2009
33rd Annual IEEE International Computer Software and Applica-
tions Conference. Vol. 1. IEEE. 2009, pp. 579–586.

[69] Rinse Wester and Jan Kuper. “Deriving stencil hardware accel-
erators from a single higher-order function.” In: Communicating
Processes Architectures 2014. Ed. by P.H. Welch. Open Channel
publishing, 2014, pp. 205–218.

[70] Markus Wittmann, Georg Hager, and Gerhard Wellein. “Multicore-
aware parallel temporal blocking of stencil codes for shared and
distributed memory.” In: Parallel & Distributed Processing, Work-
shops and Phd Forum (IPDPSW), 2010 IEEE International Sympo-
sium on. IEEE. 2010, pp. 1–7.

[71] Michael E Wolf and Monica S Lam. “A data locality optimiz-
ing algorithm.” In: ACM Sigplan Notices. Vol. 26. 6. ACM. 1991,
pp. 30–44.

[72] Laurence T Yang and Minyi Guo. High-performance computing:
paradigm and infrastructure. Vol. 44. John Wiley & Sons, 2005.

[73] Xing Zhou. “Tiling optimizations for stencil computations.” PhD
thesis. University of Illinois at Urbana-Champaign, 2013.

D E C L A R AT I O N

I hereby confirm that this thesis on An Extension of a Functional In-
termediate Language for Parallelizing Stencil Computations and its Opti-
mizing GPU Implementation using OpenCL is solely my own work and
that I have used no sources or aids other than the ones stated. All
passages in my thesis for which other sources, including electronic
media, have been used, be it direct quotes or content references, have
been acknowledged as such and the sources cited.

I agree to have my thesis checked in order to rule out potential sim-
ilarities with other works and to have my thesis stored in a database
for this purpose.

Ibbenbüren, September 2016

Bastian Hagedorn

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Final Version as of March 21, 2017 (classicthesis version 4.2).

https://bitbucket.org/amiede/classicthesis/

	Dedication
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction and Background
	1.1 Motivation
	1.2 Background
	1.2.1 GPU Programming in OpenCL
	1.2.2 Structured Parallel Programming
	1.2.3 The LIFT Framework
	1.2.4 Stencil Computations

	1.3 Related Work
	1.4 Contributions

	2 Expressing Stencil Computations Using High-Level Functional Primitives
	2.1 Formal Definition of Stencil Computations
	2.2 High-Level Algorithmic Functional Primitives
	2.2.1 Creating Neighborhoods Using the Slide Primitive
	2.2.2 Boundary Handling Using the Pad Primitive
	2.2.3 Stencils as Composition of Pad, Slide and Map

	2.3 Multidimensional Stencils
	2.3.1 Two Dimensional Boundary Handling Using Pad
	2.3.2 Creating Two Dimensional Neighborhoods Using Slide
	2.3.3 Multidimensional Stencil Examples

	2.4 Summary

	3 Optimizing Stencil Computations Using Low-Level Primitives
	3.1 Low-Level OpenCL-Specific Functional Primitives
	3.2 Optimizing Stencil Convolution
	3.2.1 Naive Version
	3.2.2 Applying Tiling to Utilize Local Memory
	3.2.3 Increasing Efficiency by Separating Convolution
	3.2.4 Transposing the Local Memory Tile in the Column Convolution
	3.2.5 Loop Unrolling and Reducing Boundary Checks

	3.3 Summary

	4 Generating High Performance OpenCL Code
	4.1 LIFT View System
	4.2 Index Computation Simplification
	4.3 OpenCL Code Generation
	4.4 Summary

	5 Evaluation
	5.1 Experimental and Hardware Setup
	5.2 Performance of Handwritten Convolution Kernels
	5.3 Performance of Generated Convolution Kernels
	5.4 Measuring the Overhead of Unsimplified Arithmetic Expressions
	5.5 Performance Compared to Nvidia Toolkit Example

	6 Conclusion
	A Appendix
	A.1 OpenCL kernels implementing optimizations for the 1717 convolution
	A.2 Correctness Proofs for Rewrite Rules
	A.3 Systematical Rewriting of Functional Expressions

	Bibliography
	Declaration
	Colophon

