
I N F O R M AT I K

I M P R O V I N G P R O G R A M M A B I L I T Y
A N D P E R F O R M A N C E P O RTA B I L I T Y

O N M A N Y- C O R E P R O C E S S O R S

Inaugural-Disseration
zur Erlangung des Doktorgrades der
Naturwissenschaften im Fachbereich

Mathematik und Informatik
der Mathematisch-Naturwissenschaftlichen Fakultät

der Westfälischen Wilhelms-Universität Münster

vorgelegt von

michel steuwer

aus Duisburg

– 2015 –

Improving Programmability
and Performance Portability
on Many-Core Processors

Michel Steuwer
© 2015

dekan: Prof. Dr. Martin Stein

erster gutachter: Prof. Dr. Sergei Gorlatch

zweiter gutachter: Lecturer Dr. Christophe Dubach

tag der mündlichen

prüfung:

tag der promotion:

A B S T R A C T

Computer processors have radically changed in the recent 20 years
with multi- and many-core architectures emerging to address the in-
creasing demand for performance and energy efficiency. Multi-core
CPUs and Graphics Processing Units (GPUs) are currently widely
programmed with low-level, ad-hoc, and unstructured programming
models, like multi-threading or OpenCL/CUDA. Developing function-
ally correct applications using these approaches is challenging as they
do not shield programmers from complex issues of parallelism, like
deadlocks or non-determinism. Developing optimized parallel pro-
grams is an even more demanding task – even for experienced pro-
grammers. Optimizations are often applied ad-hoc and exploit spe-
cific hardware features making them non-portable.

In this thesis we address these two challenges of programmability
and performance portability for modern parallel processors.

In the first part of the thesis, we present the SkelCL programming
model which addresses the programmability challenge. SkelCL intro-
duces three main high-level features which simplify GPU program-
ming: 1) parallel container data types simplify the data management
in GPU systems; 2) regular patterns of parallel programming (a. k. a.,
algorithmic skeletons) simplify the programming by expressing par-
allel computation in a structured way; 3) data distributions simplify
the programming of multi-GPU systems by automatically managing
data across all the GPUs in the system. We present a C++ library im-
plementation of our programming model and we demonstrate in an
experimental evaluation that SkelCL greatly simplifies GPU program-
ming without sacrificing performance.

In the second part of the thesis, we present a novel compilation
technique which addresses the performance portability challenge. We in-
troduce a novel set of high-level and low-level parallel patterns along
with a set of rewrite rules which systematically express high-level
algorithmic implementation choices as well as low-level, hardware-
specific optimizations. By applying the rewrite rules pattern-based
programs are transformed from a single portable high-level represen-
tation into hardware-specific low-level expressions from which effi-
cient OpenCL code is generated. We formally prove the soundness
of our approach by showing that the rewrite rules do not change the
program semantics. Furthermore, we experimentally confirm that our
novel compilation technique can transform a single portable expres-
sion into highly efficient code for three different parallel processors,
thus, providing performance portability.

iii

P U B L I C AT I O N S

This thesis is based on ideas and results which have been described
in the following publications:

M. Steuwer, P. Kegel, S. Gorlatch. SkelCL – A Portable Multi-GPU Skele-
ton Library. Technical Report. University of Münster, Dec. 2010.

M. Steuwer, P. Kegel, S. Gorlatch. “SkelCL - A Portable Skeleton Li-
brary for High-Level GPU Programming.” In: 2011 IEEE Interna-
tional Symposium on Parallel and Distributed Processing Workshops
and Phd Forum (IPDPSW). Anchorage, AK, USA: IEEE, May 2011,
pp. 1176–1182.

M. Steuwer, S. Gorlatch, M. Buß, S. Breuer. “Using the SkelCL Li-
brary for High-Level GPU Programming of 2D Applications.”
In: Euro-Par 2012: Parallel Processing Workshops, August 27-31,
2012. Revised Selected Papers. Edited by Ioannis Caragiannis et al.
Vol. 7640. Lecture Notes in Computer Science. Rhodes Island,
Greence: Springer, Aug. 2012, pp. 370–380.

M. Steuwer, P. Kegel, S. Gorlatch. “A High-Level Programming Ap-
proach for Distributed Systems with Accelerators.” In: New Trends
in Software Methodologies, Tools and Techniques New Trends in Soft-
ware Methodologies, Tools and Techniques - Proceedings of the Eleventh
SoMeT. Edited by Hamido Fujita and Roberto Revetria. Vol. 246.
Frontiers in Artificial Intelligence and Applications. Genoa, Italy:
IOS Press, Sept. 2012, pp. 430–441.

M. Steuwer, P. Kegel, S. Gorlatch. “Towards High-Level Program-
ming of Multi-GPU Systems Using the SkelCL Library.” In: 2012
26th IEEE International Symposium on Parallel and Distributed Pro-
cessing Workshops and Phd Forum (IPDPSW). Shanghai, China:
IEEE, May 2012, pp. 1858–1865.

P. Kegel, M. Steuwer, S. Gorlatch. “Uniform High-Level Program-
ming of Many-Core and Multi-GPU Systems.” In: Transition of
HPC Towards Exascale Computing. Edited by Erik D’Hollander,
Jack Dongarra, Ian Foster, Lucio Grandinetti, and Gerhard Jou-
bert. Vol. 24. IOS Press, 2013, pp. 159–176.

M. Steuwer, S. Gorlatch. “High-Level Programming for Medical
Imaging on Multi-GPU Systems using the SkelCL Library.” In:
Proceedings of the International Conference on Computational Science
(ICCS 2013). Edited by Vassil N. Alexandrov, Michael Lees, Vale-
ria V. Krzhizhanovskaya, Jack Dongarra, and Peter M. A. Sloot.
Vol. 18. Procedia Computer Science. Barcelona, Spain: Elsevier,
June 2013, pp. 749–758.

v

M. Steuwer, S. Gorlatch. “SkelCL: Enhancing OpenCL for High-Level
Programming of Multi-GPU Systems.” In: Parallel Computing Tech-
nologies - 12 International Conference (PaCT 2013). Edited by Victor
Malyshkin. Vol. 7979. Lecture Notes in Computer Science. St. Pe-
tersburg, Russia: Springer, Sept. 2013, pp. 258–272.

S. Breuer, M. Steuwer, S. Gorlatch. “Extending the SkelCL Skeleton
Library for Stencil Computations on Multi-GPU Systems.” In: Pro-
ceedings of the 1st International Workshop on High-Performance Sten-
cil Computations. Edited by Armin Größlinger and Harald Köstler.
HiStencils 2014. Vienna, Austria, Jan. 2014, pp. 15–21.

S. Gorlatch, M. Steuwer. “Towards High-Level Programming for Sys-
tems with Many Cores.” In: Perspectives of System Informatics - 9th
International Ershov Informatics Conference, PSI 2014, St. Petersburg,
Russia, June 24-27, 2014. Revised Selected Papers. Edited by Andrei
Voronkov and Irina Virbitskaite. Vol. 8974. Lecture Notes in Com-
puter Science. Springer, 2014, pp. 111–126.

C. Kessler, S. Gorlatch, J. Emmyren, U. Dastgeer, M. Steuwer, P. Kegel.
“Skeleton Programming for Portable Many-Core Computing.” In:
Programming Multi-core and Many-core Computing Systems. Edited
by Sabri Pllana and Fatos Xhafa. Wiley Series on Parallel and Dis-
tributed Computing. Wiley-Blackwell, Oct. 2014.

M. Steuwer, M. Friese, S. Albers, S. Gorlatch. “Introducing and Imple-
menting the Allpairs Skeleton for Programming Multi-GPU Sys-
tems.” In: International Journal of Parallel Programming 42.4 (Aug.
2014), pp. 601–618.

M. Steuwer, S. Gorlatch. “SkelCL: A high-level extension of OpenCL
for multi-GPU systems.” In: The Journal of Supercomputing 69.1
(July 2014), pp. 25–33.

M. Steuwer, M. Haidl, S. Breuer, S. Gorlatch. “High-Level Program-
ming of Stencil Computations on Multi-GPU Systems Using the
SkelCL Library.” In: Parallel Processing Letters 24.03 (Sept. 2014).
Edited by Armin Größlinger and Harald Köstler, pp. 1441005/1–
17.

M. Steuwer, C. Fensch, C. Dubach. Patterns and Rewrite Rules for
Systematic Code Generation (From High-Level Functional Patterns to
High-Performance OpenCL Code). Technical Report. Feb. 9, 2015.

M. Steuwer, C. Fensch, S. Lindley, C. Dubach. “Generating Perfor-
mance Portable Code using Rewrite Rules: From High-Level
Functional Patterns to High-Performance OpenCL Code.” In:
Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming. ICFP. accepted for publication. Vancou-
ver, Canada: ACM, 2015.

vi

A C K N O W L E D G E M E N T S

This thesis is the result of 4 and a half years of research during which
I have been supported by many helpful people.

First and foremost, I thank my supervisor Sergei Gorlatch how has
given me the guidance and freedom which enabled my research. I’m
especially thankful for this support of my numerous and fruitful re-
search visits at the University of Edinburgh.

I thank Christophe Dubach for our joint research collaboration with
many rich and extensive discussions. I’m especially grateful for this
continuous enthusiasm for our collaborative work.

During my time in Münster I had the pleasure of a friendly and
supportive group of colleagues, which includes: Sebastian Albers,
Frank Glinka, Waldemar Gorus, Michael Haidl, Tim Humernbrum,
Julia Kaiser-Mariani, Philipp Kegel Dominik Meiländer, Mohammed
Nsaif, Alexander Ploss, and Ari Rasch.

I want to specifically thank Philipp Kegel for our numerous dis-
cussions and close collaboration on SkelCL and Sebastian Albers and
Michael Haidl for their work on our joint publications.

I also want to mention and thank two friends and fellow PhD stu-
dents from Münster Benjamin Risse and Sven Strothoff with whom I
could share the day-to-day struggles of a PhD student.

During the work on this thesis I visited the University of Edinburgh
numerous times and eventually started working there as a Research
Associate. During my visits I have met many friendly, interesting, and
inspiring people – too many to list all of them here. I want to espe-
cially thank Thibaut Lutz which whom I collaborated closely during
my first stay in Edinburgh and his supervisors Christian Fensch and
Murray Cole. I already mentioned Christophe Dubach which whom
I started a fruitful research collaboration leading to the development
of the code generation technique presented in the second half of this
thesis.

I’m grateful for the financial support I received from the EU
founded HPCEuropa2 program and the HiPEAC network of excel-
lence which made my research visits to Edinburgh possible.

As I spend a large part of my time in Münster teaching, super-
vising, and working with students I want to thank all the students
participating in the 14 courses I co-supervised. By teaching students
computer science I gained many useful skills which have contributed
to the quality of my research.

I particular want to mention and thank the students I have co-
supervised during their Bachelor and Master theses. These are:
Markus Blank-Burian, Stefan Breuer, Julian Buscher, Matthias Buss,

vii

Matthias Droste, Malte Friese, Tobias Günnewig, Wadim Hamm, Kai
Kientopf, Lars Klein. Sebastian Missbach, Michael Olejnik, Florian
Quinkert, Patrick Schiffler, and Jan-Gerd Tenberge.

Last, but not least I thank my parents and my brothers for their
support, love, and interest in me and my research. Especially, for their
continuing engagement and enthusiasm about my research visits to
universities and conferences around the world.

Michel Steuwer
April 2015

Edinburgh

viii

C O N T E N T S

I introduction & background 1

1 introduction 3

1.1 Multi-Core Processors and their Programming 4

1.2 The Programmability Challenge 6

1.3 The Performance Portability Challenge 7

1.4 Contributions of this Thesis 8

1.5 Outline of this Thesis . 9

2 background 11

2.1 Modern Parallel Processors 11

2.1.1 Multi-Core CPUs 11

2.1.2 Graphics Processing Units (GPUs) 13

2.2 Programming of Multi-Core CPUs and GPUs 16

2.2.1 The OpenCL Programming Approach 17

2.3 Structured Parallel Programming 20

2.3.1 Algorithmic Skeletons 21

2.3.2 Advantages of Structured Parallel Programming 23

2.4 Summary . 24

II the skelcl high-level programming model 25

3 high-level programming for multi-gpu systems 27

3.1 The Need for High-Level Abstractions 27

3.1.1 Challenges of GPU Programming 27

3.1.2 Requirements for a High-Level
Programming Model 34

3.2 The SkelCL Programming Model 35

3.2.1 Parallel Container Data Types 35

3.2.2 Algorithmic Skeletons 36

3.2.3 Data Distribution and Redistribution 40

3.2.4 Advanced Algorithmic Skeletons 42

3.3 The SkelCL Library . 49

3.3.1 Programming with the SkelCL Library 50

3.3.2 Syntax and Integration with C++ 51

3.3.3 Skeleton Execution on OpenCL Devices 56

3.3.4 Algorithmic Skeleton Implementations 59

3.3.5 Memory Management Implementation 71

3.3.6 Data Distribution Implementation 72

3.4 Conclusion . 72

4 application studies 75

4.1 Experimental Setup . 75

4.1.1 Evaluation Metrics 75

4.1.2 Hardware Setup 76

ix

x contents

4.2 Computation of the Mandelbrot Set 76

4.3 Linear Algebra Applications 79

4.4 Matrix Multiplication . 85

4.5 Image Processing Applications 94

4.5.1 Gaussian Blur . 94

4.5.2 Sobel Edge Detection 98

4.5.3 Canny Edge Detection 101

4.6 Medical Imaging . 103

4.7 Physics Simulation . 109

4.8 Summary . 112

4.9 Conclusion . 114

III a novel code generation approach offering

performance portability 115

5 code generation using patterns 117

5.1 A Case Study of OpenCL Optimizations 118

5.1.1 Optimizing Parallel Reduction for Nvidia GPUs 118

5.1.2 Portability of the Optimized Parallel Reduction 129

5.1.3 The Need for a Pattern-Based Code Generator . 132

5.2 Overview of our Code Generation Approach 134

5.2.1 Introductory Example 135

5.3 Patterns: Design and Implementation 137

5.3.1 High-level Algorithmic Patterns 137

5.3.2 Low-level, OpenCL-specific Patterns 142

5.3.3 Summary . 148

5.4 Rewrite Rules . 149

5.4.1 Algorithmic Rules 149

5.4.2 OpenCL-Specific Rules 154

5.4.3 Applying the Rewrite Rules 158

5.4.4 Towards Automatically Applying our Rewrite
Rules . 166

5.4.5 Conclusion . 166

5.5 Code Generator & Implementation Details 167

5.5.1 Generating OpenCL Code for Parallel Reduction 167

5.5.2 Generating OpenCL Code for Patterns 170

5.5.3 The Type System and Static Memory Allocation 174

5.5.4 Implementation Details 175

5.6 Conclusion . 175

6 application studies 177

6.1 Experimental Setup . 177

6.2 Parallel Reduction . 177

6.2.1 Automatically Applying the Rewrite Rules . . . 179

6.3 Linear Algebra Applications 184

6.3.1 Comparison vs. Portable Implementation 185

6.3.2 Comparison vs. Highly-tuned Implementations 186

6.4 Molecular Dynamics Physics Application 188

contents xi

6.5 Mathematical Finance Application 189

6.6 Conclusion . 190

IV summary & conclusion 191

7 towards a holistic systematic approach for

programming and optimizing programs 193

7.1 Addressing the Programmability Challenge 193

7.2 Addressing the Performance Portability Challenge . . 195

7.3 Future Work . 196

7.3.1 Enhancing the SkelCL Programming Model . . 197

7.3.2 Enhancing the Pattern-Based Code Generator . 199

8 comparison with related work 203

8.1 Related Work . 203

8.1.1 Algorithmic Skeleton Libraries 203

8.1.2 Other Structured Parallel Programming
Approaches . 205

8.1.3 Related GPU Programming Approaches 206

8.1.4 Related Domain Specific Approaches for
Stencil Computations 210

8.1.5 Related Approaches using Rewrite Rules 212

Appendix 213

a correctness of rewrite rules 215

a.1 Algorithmic Rules . 215

a.2 OpenCL-Specific Rules 224

b derivations for parallel reduction 227

list of figures 239

list of tables 242

list of listings 243

bibliography 247

Part I

I N T R O D U C T I O N &
B A C K G R O U N D

1I N T R O D U C T I O N

Computer architectures have radically changed in the last 20

years with the introduction of multi- and many-core designs
in almost all areas of computing: from mobile devices and

desktop computers to high-performance computing systems. Fur-
thermore, recently novel types of specialized architectures, especially
Graphics Processing Units (GPUs), have been developed featuring large
amounts of processing units for accelerating computational intensive
applications. Parallelism and specialization are seen by many as two
crucial answers to the challenge of increasing performance and at the
same time improving energy efficiency [70, 125].

Modern multi- and many-core processors are still programmed
with programming languages developed in the 1980s and 1990s, like
C++ or Java, or even older languages like C (from the 1970s) or For-
tran (from the 1950s). These languages have a simplified view of the
underlying hardware, often more or less directly resembling the Von
Neumann architecture. Multi-core processors are programmed with
low-level libraries providing threads where the programmer explicitly
controls the computations on each core executing in parallel with the
other cores. This style of programming has turned out to be extremely
difficult, as threads running concurrently on distinct cores can mod-
ify shared data leading to serious problems like deadlocks, race con-
ditions, and non-determinism. Even if programmers develop correct
parallel implementations, optimizing these implementations for mod-
ern parallel processors is a challenging task even for experienced pro-
grammers. Due to the lack of better programming systems, program-
mers are forced to manually develop low-level hardware-specific im-
plementations optimized towards a particular hardware architecture
to achieve high performance, which limits portability.

This thesis describes our work to address these issues. In the first
part of the thesis, we present a high-level programming model and
its implementation which is designed to simplify the programming of
modern parallel processors, especially systems comprising multiple
GPUs with many cores. In the second part, we discuss a system which
generates portable high-performance code for different modern par-
allel processors, particularly a multi-core CPU and two different types
of GPUs, from a single high-level program representation. In the final
part of the thesis, we outline how these two systems can be com-
bined in the future to obtain a programming system which simplifies
programming and achieves high performance on different hardware
architectures.

3

4 introduction

We will start the thesis with an introduction on programming mod-
ern parallel processors. From this we will identify the two main chal-
lenges we address in this thesis: the programmability challenge and the
performance portability challenge. We will then list our contributions
before presenting the outline for the rest of the thesis.

1.1 multi-core processors and their programming

Traditionally, the performance of microprocessors has been mainly
increased by boosting the clock frequency, optimizing the execution
flow, and improving caches [145]. Processor development drastically
changed around 10 years ago, as shown in Figure 1.1. While the num-
ber of transistors continues to grow according to Moore’s Law [116],
the clock frequency and power consumption hit a plateau around
2005. The reason for this lies in multiple physical effects, especially
the physical limit of signal speed and increased heat development,
mainly due to the increased power consumption, both of which limit
further increasing of the clock frequency. The predominant answer
to this challenge has been the introduction of multiple distinct cores
within one processor which can operate independently and concur-
rently. Parallelism has been exploited in computer architectures for
a long time at the bit level and the instruction level, but different
than before with the introduction of multiple cores, this new thread-
level parallelism has been made explicit to the programmer. This has
profound effects on the design and development of software running
on modern multi-core processors. Most programming languages al-
low programmers to exploit multiple cores by the means of threads. A
thread is a sequence of instructions defined by the programmer which
can be scheduled by the runtime system to be executed on a particu-
lar core. Multiple threads can be executed concurrently and the pro-
grammer is responsible to use synchronization primitives, like locks
or semaphores, for coordinating the execution of multiple threads.
Programming with threads is widely regarded as extremely diffi-
cult [106] mainly because multiple threads can simultaneously mod-
ify a shared memory region. Even when programs are constructed
carefully subtle problems can arise which are hard to detect but can
have severe consequences. Nevertheless, threads are still the de-facto
standard for programming multi-core CPUs.

While Moore’s law still holds and transistor counts increase by further
shrinking the transistor size, a related observation, known as Den-
nard scaling [52], has broken down. Dennard scaling suggested that
power consumption is proportional to the area used for transistors
on the chip. Combined with Moore’s law this meant, that the energy
efficiency of processors doubled roughly every 18 month. The pri-
mary reason for the breakdown of Dennard scaling around 2005 were
physical effects appearing at small scale, especially current leakage

1.1 multi-core processors and their programming 5

●
●●●
●●

●

●●● ●●

●

●●●●●●●

●●●● ●●● ●

● ●
● ● ●●●● ●●●●●●● ●●

●● ●●● ●●●●●
●●● ●

●●●●
●●● ●●●●

●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●● ●●●●●
●●●●

●●●●●●●●

●● ●●●

●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●
●●●

●●●●
●●●● ●

●●●●

●●●●●

●●●

●●●●

●●●●●●●●
●●● ●

● ●

●
●●
● ●

●●

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

● Transistors (in 1000s)

Clock Frequency (in Mhz)

Power (in Watt)

Number of Cores

Figure 1.1: Development of Intel Desktop CPUs over time. While transistor
count continues to grow, around 2005 clock frequency and power
consumption have reached a plateau. As an answer multi-core
processors emerged. Inspired by [145].

and increased heat development. This has led to architectures which
particularly focus on their energy efficiency, the most prominent ex-
ample of such architectures are modern graphics processing units
(GPUs). Originally developed for accelerating the rendering of com-
plex graphics and 3D scenes, GPU architectures have been recently
generalized to support more types of computations. Some people re-
fer to this development using the term general-purpose computing
on graphics processing units (GPGPU).

Technically GPU architectures are multi-core architectures like mod-
ern multi-core CPUs, but each individual core on a GPU typically has
dozens or hundreds of functional units which can perform computa-
tions in parallel following the Single Instruction, Multiple Data (SIMD)
principle. These types of architectures are optimized towards a high
throughput of computations, therefore, they focus on performing a
large amount of operations in parallel and feature no, or only small,
caches to prevent or mitigate latencies of the memory: if a thread
stalls waiting for the memory, another thread takes over and keeps
the core busy. For multi-core CPUs switching between threads is more
expensive, therefore, CPUs are instead optimized to avoid long laten-
cies when accessing the memory with a deep cache hierarchy and
advanced architectural features, like long pipelines and out-of-order
execution, all of which are designed to keep each core busy.

6 introduction

1.2 the programmability challenge

Developing efficient programs for modern parallel processors is a
challenging task. The current approach for programming multi-core
CPUs is using multithreading, i. e., explicitly managing the individual
execution paths (called threads) in a single program. Threads commu-
nicate via a shared memory, where all threads have the possibility
to modify any data item. This fundamental principle gives the pro-
grammer full control over the interaction of the threads, but greatly
complicates the reasoning about the programs behavior. The exten-
sive and explicit control implies a low level of abstraction, where the
programmer deals with many details of the execution explicitly. This
makes the development of programs using threads complex and cer-
tain types of bugs likely, including deadlocks and race conditions,
where the computed result depends on the order the threads are exe-
cuted in. This ultimately leads to extensive problems during the devel-
opment cycle as well as possible non-deterministic and undesirable
behavior at runtime.

Programming GPUs requires a different programming approach,
as it is obviously infeasible to manage thousands of threads individ-
ually. CUDA [44] and OpenCL [119] are the two most popular ap-
proaches for programming GPUs. Both approaches are quite similar
and require the programmer to write a function, called kernel, which
will be executed in parallel on the GPU. The kernel usually contains
source code for identifying the thread executing the particular kernel
instance. This information is used to coordinate on which data each
thread operates on. While this Single Program, Multiple Data (SPMD)
programming model makes the management of many threads feasi-
ble, it does not address most problems associated with the low-level
programming using threads. For example, explicit synchronization of
threads is still required and problems like deadlocks and race condi-
tions can still easily occur. Furthermore, GPU programming currently
involves extensive boilerplate code to manage the execution on the
GPU, including the compilation of the kernel (in OpenCL), transfer-
ring data to and from the GPU, and launching the kernel by explicit
specifying the number of threads to be started in parallel.

All of this leads to our first central research challenge of programma-
bility: to design a programming approach which significantly raises
the level of abstraction and, thus, greatly simplifies the development
process of parallel applications, without sacrificing high-performance
on multi-core CPUs and GPUs. We will underpin the necessity to ad-
dress this challenge with an extensive study of state-of-the-art GPU
programming using a concrete application example in Chapter 3. In
Part II of this thesis, we introduce, discuss, and evaluate a novel high-
level programming model which addresses this challenge.

1.3 the performance portability challenge 7

1.3 the performance portability challenge

Developing functionally correct applications for multi-core CPUs or
GPUs is very challenging as discussed in the preceding subsection.
Unfortunately, the development of high-performing optimized appli-
cations is even more demanding – even for experienced programmers.
Applying optimizations often requires substantial restructuring of ex-
isting code. Optimizations are often applied ad-hoc, following cer-
tain “rules of thumb” derived from small-scale profiling and experi-
ments as well as previously gained experience. There exists no widely
established approach for performing optimizations more systemati-
cally. Especially, the performance implications of optimizations are
currently not predictable: sometimes supposed optimizations lead to
actual slowdowns in certain circumstances.

Modern optimizing compilers perform very sophisticated low-level
optimizations, including various loop optimizations and optimiza-
tions based on data-flow analysis. For all these type of optimiza-
tions, the compiler first has to recover parts of the high-level pro-
gram semantics using code analysis before applying the optimization.
As these analyses quickly become very complex, compilers are ulti-
mately limited in their optimization capabilities. High-level optimiza-
tions which might restructure the entire source code are often out of
the reach of low-level compiler optimizations and, therefore, require
explicit and often extensive manual refactoring. The state-of-the-art
optimizing compilers are lacking the high-level semantic information
necessary for performing this kind of optimizations.

Many optimizations exploit particular hardware-specific features
of the target architecture and are, thus, inherently not portable. In
current low-level programing models the programmers often encode
these optimizations directly. As a result programmers are confronted
with the trade-off of either fully optimize their code for performance
– at the expense of code portability – or implement a portable version
– at the expense of missing out on the highest performance possible.
Nowadays, programmers often choose a middle ground by introduc-
ing conditionals and branches in their code to select optimizations
for the given hardware, while maintaining portability. This, obviously,
complicates the development process and decreases maintainability.

This leads to our second central research challenge of performance
portability: to design a systematic approach that generates an opti-
mized, hardware-specific code for different target architectures from
a single portable, high-level program representation. We will con-
firm the lack of portability of performance in current state-of-the-art
programming approaches using a study comparing optimizations on
three different hardware architectures in Chapter 5. In Part III of this
thesis, we introduce, discuss, and evaluate a novel systematic code
generation approach which addresses this challenge.

8 introduction

1.4 contributions of this thesis

This thesis makes the following four major contributions:

For addressing the programmability challenge:

a high-level programming model for mutli-gpu systems

We present the design and implementation of our high-level
programming model SkelCL for programming multi-GPU sys-
tems. SkelCL offers three high-level features for simplifying
the programming of GPUs: container data types, algorithmic
skeletons, and data distributions. We discuss our C++ library
implementation of the SkelCL programming model which is
deeply integrated with modern C++ features. Finally, we evalu-
ate the level of abstraction and runtime performance of SkelCL
using a set of application studies.

two novel algorithmic skeletons

We introduce two novel algorithmic skeletons specialized to-
wards allpairs and stencil computations. We present their formal
definitions and discuss possible use cases in real-world applica-
tions. For the allpairs skeleton we identify and formally define
an optimization rule which enables an optimized implementa-
tion on GPUs. We discuss and evaluate efficient implementa-
tions for both skeletons on a multi-GPU system.

For addressing the performance portability challenge:

a formal system for rewriting pattern-based programs

We introduce a novel system comprising a set of high-level and
low-level patterns along with a set of rewrite rules. The rewrite
rules express high-level algorithmic and low-level optimiza-
tion choices which can be systematically applied to transform
a program expressed with our functional patterns. We prove
the soundness of our approach by showing that applying the
rewrite rules does not change the program semantics.

a code generator offering performance portability

Based on our formal system of rewrite rules, we present a novel
code generator which generates from a single pattern-based pro-
gram highly efficient OpenCL code for three different hardware
platforms: one multi-core CPU and two different GPU architec-
tures. We discuss the design of our code generator and evaluate
the performance of the generated OpenCL code as compared
against highly optimized hand-written library codes.

1.5 outline of this thesis 9

1.5 outline of this thesis

The remainder of this thesis is structured as follows.

Part I – Introduction

Chapter 2 provides an introduction into the main aspects of pro-
gramming modern multi-core CPUs and GPUs. We will start with
a discussion of the hardware where we mainly focus on GPUs, dis-
cuss in detail their architectures, the state-of-the-art programming
approaches, and optimization opportunities. We will then shift our
focus and introduce the algorithmic skeleton parallel programming
model including its origins in functional programming.

Part II – The SkelCL High-Level Programming Model

Chapter 3 addresses the programmability challenge identified in
this chapter by introducing our novel SkelCL high-level programming
model targeted towards multi-GPU systems and its implementation
as a C++ library. We will start by further motivating the need for high-
level abstractions to simplify the software development process. Then
we present SkelCL’s three high-level features: 1) parallel container
data types, 2) algorithmic skeletons, and 3) data distributions. The
combination of these features greatly simplifies the programming of
multi-GPU applications. Finally, we will discuss the SkelCL library
implementation and its integration within C++.

Chapter 4 evaluates the SkelCL programming model and library
using multiple application studies. We will start with discussing typi-
cal benchmark applications like the Mandelbrot set computation and
popular benchmarks from linear algebra, including matrix multipli-
cation. We then continue with discussing more advanced applica-
tions from different areas of computing, including image process-
ing, medical imaging, and physics. We evaluate the improvement of
programmability and the performance of SkelCL as compared with
implementations written using the state-of-the-art OpenCL program-
ming approach.

Part III – A Novel Code Generation Approach using Patterns

Chapter 5 addresses the performance portability challenge iden-
tified in this chapter by introducing a novel approach for generat-
ing highly optimized hardware-specific code for different target ar-
chitectures from a single portable, high-level program representation.
We will start the chapter with a study showing that optimizations in
OpenCL are not portable across different hardware architectures. This

10 introduction

emphasizes the motivation for performance portability in order to
preserve maintainability while increasing performance. We continue
by discussing the design of our code generation approach consisting
of a set of parallel patterns combined with a set of rewrite rules. The
rewrite rules allow to systematically rewrite pattern-based programs
without changing their semantics which we will show formally. Fi-
nally, we discuss how the rewrite rules can be systematically applied
to optimize pattern-based programs for a particular hardware archi-
tecture.

Chapter 6 evaluates our code generation approach using a set
of benchmark applications. We evaluate the performance of the code
generated using our approach and compare it against highly tuned
library code on three different hardware architectures.

Part IV – Summary & Conclusions

Chapter 7 summarizes Part I and Part II and describes their re-
lation. We will discuss how SkelCL, presented in Part II, could be
combined in the future with the code generator, presented in Part III,
to obtain a system offering both high-level abstractions to simplify
programming and portable, high performance on different hardware
architectures. We will then discuss possible future extensions of our
research.

Chapter 8 concludes with a comparison against related work.

2B A C K G R O U N D

In this chapter we will introduce and discuss the technical back-
ground of this thesis. We will start by discussing the structure
and functionality of multi-core CPUs and GPUs. We will focus

on GPUs as their architecture is quite different to traditional CPUs,
and because GPUs will be the main hardware target of our SkelCL
programming model presented later. Then we will discuss the most
common programming approaches for multi-core CPUs and GPUs,
with a particular focus on OpenCL.

We will then introduce the idea of structured parallel programming
and discuss its origin in functional programming. In this approach,
predefined parallel patterns (a. k. a., algorithmic skeletons) hiding the
complexities of parallelism are used for expressing parallel programs.
This thesis builds upon this idea, developing a structured parallel pro-
gramming model for GPUs and a novel compilation technique that
transforms pattern-based programs to efficient hardware-specific im-
plementations.

2.1 modern parallel processors

As discussed in the introduction in Chapter 1, virtually all mod-
ern processors feature multiple cores to increase their performance
and energy efficiency. Here we will look at two major types of mod-
ern parallel processors: multi-core CPUs and GPUs. Multi-core CPUs
are latency-oriented architectures [70], i. e., they are optimized to hide
memory latencies with large caches and various other advanced ar-
chitectural features, like out-of-order execution and extensive branch
prediction. GPUs are throughput-oriented architectures [70], i. e., they
are optimized to increase the overall computational throughput of
many parallel tasks instead of optimizing single task performance.

We will discuss both architectures in the following two sections.

2.1.1 Multi-Core CPUs

Figure 2.1 shows an abstract representation of a typical multi-core
CPU architecture, like Intel’s latest CPU architecture: Haswell [32].
The CPU is divided into multiple cores each of which features two
levels of caches. The smallest but fastest cache is called L1 cache
and is typically divided into a distinct cache for instructions and a
data cache, each of 32 kilobyte for the Haswell architecture. Each core

11

12 background

CPU

RAM

L3 cache

L2
cache

L1 cache …
CPU
core

L2
cache

L1 cache

CPU
core

L2
cache

L1 cache

CPU
core

Figure 2.1: Overview of a multi-core CPU architecture

also features a second level cache (L2 cache) of 256 kilobyte for the
Haswell architecture. The CPU has a large cache (L3 cache) which is
shared by all cores. This cache is often several megabytes large, for
Intel’s Haswell architecture the L3 cache is at least 2 and up to 45

megabytes in size.
Each CPU core performs computations completely independently

of the other cores, and it consists itself of multiple execution units
which can perform computations in parallel. This happens transpar-
ently to the programmer even when executing a sequential program.
CPUs use advanced branch prediction techniques to perform aggres-
sive speculative execution for increased performance. The CPU core
exploits instruction level parallelism (ILP) by performing out-of-order
execution which re-orders instructions prior to execution while still
respecting their dependencies: e. g., if two or more instructions have
no dependencies then they can be executed in parallel. In the Intel
Haswell architecture, 4 arithmetic operations and 4 memory opera-
tions can be performed in parallel in one clock cycle on every core.
Furthermore, most modern CPU architectures support SIMD vector ex-
tensions like the Advanced Vector Extensions (AVX) or the older Stream-
ing SIMD Extensions (SSE). These extensions add additional instruc-
tions to the instruction set architecture, allowing the compiler to gen-
erate code explicitly grouping data into vectors of small fixed sizes
which can be processed in parallel. The current AVX extension allows
vectors of up to 256 bits, e. g., a grouping of 8 single precision floating
point numbers, to be processed in parallel. Most modern optimizing
compilers perform some form of automatic vectorization, but often
programmers vectorize programs manually when the compiler fails
to generate sufficiently optimized code.

The design of multi-core CPUs is motivated by the overall goal to
provide high performance when executing multi-threaded programs

2.1 modern parallel processors 13

GPU

RAM

L2 cache

L1

…

shared
memory

GPU cores

L1
shared

memory

GPU cores

L1
shared

memory

GPU cores

Figure 2.2: Overview of a GPU architecture

and still have a high single-core performance when executing sequen-
tial programs [70]. This is why the individual cores have a quite
sophisticated design to achieve executing a series of instructions as
fast as possible, by applying out-of-order execution and exploiting
architectural features like a deep pipeline for decoding and execut-
ing instructions combined with advanced branch prediction. Unfor-
tunately, the design of these complex cores makes switching between
the threads running on the same core relatively expensive, as the ex-
ecution pipeline has to be flushed and the register content for the
first thread has to be saved before resuming the execution on the
second thread. To address this issue, some multi-core architectures
feature Simultaneous Multi-Threading (SMT), a. k. a., hyper threading: a
single CPU core can execute multiple (usually 2 or 4) threads in par-
allel and switching between the threads is cheap. This technique is
used to mitigate the effect which memory latency can have on the
execution: if a thread is waiting for a memory request then another
thread can continue executing. The other central component used to
prevent waiting times for memory requests is the cache hierarchy. As
we will see, multi-core CPUs feature considerably larger caches than
GPUs. The caches help to keep the threads running in parallel on the
multi-core CPU busy.

Among the most important optimizations to achieve high perfor-
mance on modern multi-core CPUs are: exploiting the SIMD vector
extensions and optimizing the cache usage [92].

2.1.2 Graphics Processing Units

Figure 2.2 shows an abstract representation of a typical GPU architec-
ture, like Nvidia’s latest high-performance computing GPU architec-
ture: Kepler [158]. While the overall design looks fairly similar to the

14 background

design of the multi-core CPU, the architecture of the GPU is actually
very different in its details. The lightweight GPU cores are grouped
together into what Nvidia calls a Streaming Multiprocessor (SM). In
the Kepler architecture, an SM features 192 single-precision cores,
64 double-precision units, 32 special function units, and 32 memory
units. The 192 single-precision cores are very lightweight compared
to the complex CPU cores we discussed in the previous subsection. A
single Nvidia GPU core does not support SIMD vectorization: it per-
forms the straightforward in-order execution, and does not perform
complex branch prediction. This design makes the implementation of
such a core in hardware cheap and enables the grouping of hundreds
of cores in a single SM.

Modern GPUs feature two levels of caches: the first level (L1) is
private to each SM and the second level cache (L2) is shared among
all SMs. Compared to the cache sizes of the CPU, the caches on the
GPU are fairly small. The Kepler architecture features an L1 cache
of 48 kilobyte and an L2 cache of 1.5 megabyte. It is important to
notice that these caches are shared by a vast amount of threads being
executed on the GPU: the 48 kilobyte L1 caches are shared among up
to 2048 threads being executed on a particular SM and the L2 cache
is shared among up to about 30, 000 threads.

Besides caches, each SM on a GPU features also a scratchpad mem-
ory, called shared memory in Nvidia’s GPU architectures. This memory
is small (16 or 48 kilobytes) but very fast (comparably to the L1 cache).
While the L1 cache is automatically managed by a cache controller,
the shared memory is explicitly managed by the programmer.

The design of GPUs is motivated by the overall goal to deliver max-
imal throughput even if this requires to sacrifice the performance of
single threads [70]. This is why the GPU cores are lightweight offer-
ing poor sequential performance, but thousands of cores combined
together offer a very high computational throughput. Memory laten-
cies are mitigated by a high oversubscription of threads: in the Ke-
pler architecture an SM can manage up to 2048 threads which can be
scheduled for execution on the 192 cores. If a thread is waiting for a
memory request, another thread continues its execution. This is the
reason why caches are fairly small, as they play a less important role
as in CPU architectures.

gpu thread execution The execution of threads on a GPU is
very different as compared to the execution on a traditional multi-
core CPU: multiple threads are grouped by the hardware and exe-
cuted together. Such a group of threads is called a warp by Nvidia. In
the Kepler architecture, 32 threads form a warp and an SM selects 4

warps and for each warp 2 independent instructions are selected to
be executed in parallel on its single-precision cores, double-precision
units, special function units, and memory units.

2.1 modern parallel processors 15

All threads grouped into a warp perform the same instructions
in a lockstep manner. Is is possible that two or more threads follow
different execution paths. In this case, all threads sharing a common
execution path execute together while the other threads pause their
execution. It is beneficial to avoid warps with divergent execution
paths, as this reduces or eliminates the amount of threads pausing
their execution. Nvidia calls this execution model: single-instruction,
multiple-thread (SIMT).

Programmers are advised to manually optimize their code, so that
all threads in a warp follow the same execution path. Threads in the
same warp taking different branches in the code can substantially
hurt the performance and should, therefore, be avoided.

gpu memory accesses Accessing the main memory of a GPU,
called global memory, is an expensive operation. The GPU can opti-
mize accesses when the global memory is accessed in certain fixed
patterns. If the threads organized in a warp access a contiguous area
of the memory which fits in a cache line, the hardware can coalesce
the memory access, i. e., perform a single memory request instead of
issuing individual requests for every thread. Several similar access
patterns exist which are detected by the hardware to coalesce the
memory accesses by multiple threads.

This is a major optimization opportunity for many GPU programs,
as the available memory bandwidth can only be utilized properly if
memory accesses are coalesced. Uncoalesced memory accesses may
severely hurt the performance.

gpu shared memory The usage of the shared memory featured
in each SM can substantially increase performance – when used prop-
erly. The programmer is responsible for exploiting this memory by
explicitly moving data between the global memory and the shared
memory. All threads executing on the same SM have shared access to
the shared memory at a high bandwidth and with low latency. When
multiple threads need to access the same data item, it is often bene-
ficial to first load the data item into the shared memory by a single
thread and perform all successive accesses on the shared memory.
This is similar to a cache with the difference that the programmer has
to explicitly control its behavior. Shared memory can also be used
by a thread to efficiently synchronize and communicate with other
threads running on the same SM. On current GPUs, global synchro-
nization between threads running on different SMs is not possible.

Summarizing, current GPU architectures are more sensitive to opti-
mizations than CPU architectures. The most important optimizations
on GPUs are: exploit the available parallelism by launching the right
amount of threads, ensure that accesses to the global memory are co-
alesced, use the shared memory to minimize accesses to the global

16 background

memory, and avoid divergent branches for threads organized in a
warp [151].
In addition to these optimizations, it is important for the programmer
to keep in mind that the application exploiting the GPU is still exe-
cuted on the CPU and typically only offloads computation-intensive
tasks to the GPU. An often crucial optimization is to minimize the
data transfer between the CPU and the GPU or overlap this transfer
with computations on the GPU.

We now discuss the current approaches to program multi-core CPUs
and GPUs in detail.

2.2 programming of multi-core cpus and gpus

Arguably the most popular programming approach for multi-core
CPUs is multithreading. Threading libraries exist for almost all pop-
ular programming languages, including C [94, 129] and C++ [141].
Threads are conceptionally similar to processes in an operating sys-
tem, with the major difference that threads share the same address
space in memory while processes usually do not. This enables threads
to communicate and cooperate efficiently with each other by directly
using the same memory. Programmers have great flexibility and con-
trol over the exact behavior of the threads and their interaction, in-
cluding the important questions of when and how many threads to
use, how tasks and data are divided across threads, and how threads
synchronize and communicate with each other. The disadvantage of
this high flexibility is that the burden of developing a correct and effi-
cient program lies almost entirely on the programmer. The interaction
of threads executing concurrently can be very complex to understand
and reason about, and traditional debugging techniques are often not
sufficient as the execution is not deterministic any more.

OpenMP [127] is a popular alternative approach focusing on ex-
ploiting parallelism of loops in sequential programs. The focus on
loops is based on the observation that loops often iterate over large
data sets performing operations on every data item without any
dependencies between iterations. Such workloads are traditionally
called embarrassingly parallel and can be parallelized in a straightfor-
ward manner. In OpenMP, the programmer annotates such loops
with compiler directives, and a compiler supporting the OpenMP
standard automatically generates code for performing the computa-
tions of the loop in parallel. Recent versions of the OpenMP standard
and the closely related OpenACC [149] standard support execution
on GPUs as well. Here the programmer has to additionally specify the
data regions which should be copied to and from the GPU prior to
and after the computation. OpenMP and OpenACC allow for a fairly
easy transition from sequential code to parallel code exploiting multi-
core CPUs and GPUs. Performance is often not optimal as current

2.2 programming of multi-core cpus and gpus 17

compilers are not powerful enough to apply important optimizations
like cache optimizations, ensuring coalesced memory accesses, and
the usage of the local memory.

CUDA [44] and OpenCL [119] are the most popular approaches to
program GPU systems. While CUDA can only be used for program-
ming GPUs manufactured by Nvidia, OpenCL is a standard for pro-
gramming GPUs, multi-core CPUs, and other types of parallel proces-
sors regardless of their hardware vendor. All major processor manu-
factures support the OpenCL standard, including AMD, ARM, IBM,
Intel, and Nvidia. We will study the OpenCL programming approach
in more detail, as it is the technical foundation of the work presented
later in Part II and Part III of this thesis.

2.2.1 The OpenCL Programming Approach

OpenCL is a standard for programming multi-core CPUs, GPUs, and
other types of parallel processors. OpenCL was created in 2008 and
has since been refined multiple times. In this thesis, we will use the
OpenCL standard version 1.1 which was ratified in June 2010. This is
the most commonly supported version of the standard with support
from all major hardware vendors: AMD, ARM, Intel, and Nvidia. For
example, are the newer OpenCL standards version 2.0 and 2.1 cur-
rently not supported on Nvidia GPUs at the time of writing this the-
sis.

OpenCL is defined in terms of four theoretical models: platform
model, memory model, execution model, and programming model.
We will briefly discuss all four models.

the opencl platform model Figure 2.3 shows the OpenCL
platform model. OpenCL distinguishes between a host and multiple
OpenCL devices to which the host is connected. In a system compris-
ing of a multi-core CPU and a GPU, the GPU constitutes an OpenCL
device and the multi-core CPU plays the dual rule of the host and
an OpenCL device as well. An OpenCL application executes sequen-
tially on the host and offloads parallel computations to the OpenCL
devices.

OpenCL specifies that each device is divided into one or more com-
pute units (CU) which are again divided into one or more processing
elements (PE). When we compare this to our discussion of multi-core
CPUs, there is a clear relationship: a CPU core corresponds to a com-
pute unit and the functional units inside of the CPU core performing
the computations correspond to the processing elements. For the GPU
the relationship is as follows: a streaming multiprocessor corresponds
to a compute unit and the lightweight GPU cores correspond to the
processing elements.

18 background

Device

Device

global memory

…

Device

PE local memory

CU

Host
private

memorylocal memory

CU

local memory

CU

constant memory

Figure 2.3: The OpenCL platform and memory model

the opencl memory model Each device in OpenCL has its own
memory. This memory is logically (but not necessarily physically) dis-
tinct from the memory on the host. Data has to be moved explicitly
between the host and device memory. The programmer issues com-
mands for copying data from the host to the device and vice versa.

On a device, OpenCL distinguishes four memory regions: global
memory, constant memory, local memory, and private memory. These
memory regions are shown in Figure 2.3.

The global memory is shared by all compute units of the device and
permits read and write modifications from the host and device. The
global memory is usually the biggest but slowest memory area on an
OpenCL device.

The constant memory is a region of the global memory which re-
mains constant during device execution. The host can read and write
to the constant memory, but the device can only read from it.

The local memory is a memory region private to a compute unit. It
permits read and write accesses from the device; the host has no ac-
cess to tis memory region. The local memory directly corresponds to
the fast per-SM shared memory of modern GPUs. On multi-core CPUs,
the local memory is usually only a logical distinction: local memory
is mapped to the same physical memory as the global memory.

The private memory is a memory region private to a processing ele-
ment. The device has full read and write access to it, but the host has
no access at all. The private memory contains all variables which are
private to a single thread.

the opencl execution model The communication between
the host and a particular device is performed using a command queue.
The host submits commands into a command queue which by-default
processes all commands in the first-in-first-out order. It is also pos-

2.2 programming of multi-core cpus and gpus 19

1 kernel void matMultKernel(global float* a, global float* b,
2 global float* c, int width) {
3 int colId = get_global_id(0); int rowId = get_global_id(1);
4

5 float sum = 0.0f;
6 for (int i = 0; i < width; ++i)
7 sum += a[rowId * width + k] * b[k * width + colId];
8

9 c[rowId * width + colId] = sum;
10 }

Listing 2.1: Example of an OpenCL kernel.

sible to configure command queues to operate out-of-order, i. e., no
order of execution of commands is guaranteed.

There exist three types of commands which can be enqueued in a
command queue. A memory command indicates to copy data from the
host to the device or from the device to the host. A synchronization
command enforces a certain order of execution of commands. Finally,
a kernel execution command executes a computation on the device.

A kernel is a function which is executed in parallel on an OpenCL
device. Listing 2.1 shows a simple OpenCL kernel performing matrix
multiplication. When launching a kernel on a device, the program-
mer explicitly specifies how many threads will execute in parallel
on the device. A thread executing a kernel is called a work-item in
OpenCL. Work-items are grouped together in work-groups which al-
low a more coarse-grained organization of the execution. All work-
items of a work-group share the same local memory, and synchro-
nization between work-items of the same work-group is possible but
it is forbidden for work-items from different work-groups. This is be-
cause all work-items from the same work-group are guaranteed to
be executed on the same CU, but this guarantee does not hold for
work-items from different work-groups.

OpenCL kernels are implemented in a dialect of C (starting with
OpenCL 2.1 a dialect of C++) with certain restrictions as well as ex-
tensions. The most prominent restrictions are: recursive functions and
function pointers are not supported, as well as system calls, including
malloc, printf, file I/O, etc. The most important extensions are: qual-
ifiers for pointers reflecting the four address spaces (e. g., the global
qualifier in line 1 and line 2 of Listing 2.1) and vector data types, like
float4. Moreover, OpenCL provides a set of functions which can be
used to identify the executing work-item and work-group. One exam-
ple is the get_global_id function used in line 3 of Listing 2.1. This
is usually used so that different work-items operate on different sets
of the input data. In Listing 2.1, each work-item computes one item
of the result matrix c by multiplying and summing up a row and

20 background

column of the input matrices a and b. This kernel only produces the
correct result if exactly one work-item per element of the result matrix
is launched. If the host program launches a different configuration of
work-items then only part of the computation will be performed or
out-of-bound memory accesses will occur.

the opencl programming model OpenCL supports two pro-
gramming models: data parallel programming and task parallel pro-
gramming. The predominant programming model for OpenCL is the
data parallel programming model.

In the data parallel programming model, kernel are executed by many
work-items organized in multiple work-groups. Parallelism is mainly
exploited by the work-items executing a single kernel in parallel. This
programming model is well suited for exploiting modern GPUs and,
therefore, widely used. This model is also well suited for modern
multi-core CPUs.

In the task parallel programming model, kernels are executed by a sin-
gle work-item. Programmers exploit parallelism by launching mul-
tiple tasks which are possibly executed concurrently on an OpenCL
device. This programming model is not well suited for exploiting the
capabilities of modern GPUs and, therefore, not widely used.

2.3 structured parallel programming

Structured programming emerged in the 1960s and 1970s as a reac-
tion to the “software crises”. Back then (and still today) programs
were often poorly designed, hard to maintain, and complicated to
reason about. Dijkstra identified the low-level goto statement as a
major reason for programmers writing “spaghetti code”. In his fa-
mous letter [53], he argued that programs should organize code more
structurally in procedures and using higher-level control structures
like if and while. Dijkstra’s letter helped to eventually overcome un-
structured sequential programming and to establish structured pro-
gramming [45]. The new structures proposed to replace goto where
suggested based on observations of common use cases – or patterns
of use – of the goto statement in sequential programming. By cap-
turing an entire pattern of usage, these patterns raise the abstraction
level and make it easier to reason about them. An if A then B else
C statement has a clear semantic which is easy to understand and
reason about, for example is it clear to the programmer – and the
compiler – that B and C cannot both be executed. This helps the pro-
grammer to understand the source code and the compiler to produce
an optimized executable. The equivalent unstructured code contain-
ing multiple goto statements obtains the same high-level semantic
by combining the low-level operations with their low-level semantics.
Both, programmer and compiler, have to “figure out” the high-level

2.3 structured parallel programming 21

semantic by means of analyzing the sequence of low-level operations
and reconstructing the overall semantic.

In recent years researchers have suggested similar arguments to Di-
jkstra’s for addressing the challenges attached with traditional paral-
lel programming by introducing structured parallel programing. For par-
allel programming using message passing, Gorlatch argues similar to
Dijkstra that single send and receive statements should be avoided
and replaced by collective operations [74]. Each collective operation,
e. g., broadcast, scatter, or reduce, captures a certain common com-
munication pattern traditionally implemented with individual send
and receive statements. In [113], the authors argue that structured par-
allel patterns, each capturing a common computation and communi-
cation behavior, should be used to replace explicit thread program-
ming to improve the maintainability of software. The book discusses
a set of parallel patterns and their implementation in different recent
programming approaches. The underlying ideas go far back to the
1980s when Cole was the first to introduced algorithmic skeletons to
structure and, therefore, simplify parallel programs [36]. As with se-
quential structured programming, structured parallel programming
raises the abstraction level by providing high-level constructs: collec-
tive operations, parallel patterns, or algorithmic skeletons. The higher
level of abstraction both simplifies the reasoning about the code for
the programmer and enables higher-level compiler optimizations.

As our work directly extends the ideas of Cole, we will discuss
algorithmic skeletons in more detail next.

2.3.1 Algorithmic Skeletons

Cole introduced algorithmic skeletons as special higher-order func-
tions which describe the “computational skeleton” of a parallel algo-
rithm. Higher-order functions are a well-known concept in functional
programming and describe functions accepting other functions as ar-
guments or returning a function as result. This is often useful, as it
allows to write more abstract and generic functions.

An example for an algorithmic skeletons is the divide & conquer skele-
ton which was among the original suggested skeletons by Cole [36]:

DC indivisible split join f

The algorithmic skeleton DC accepts four functions as its arguments:

• indivisible is a function deciding if the given problem should
be decomposed (divided) or not,

• split is a function decomposing a given problem into multiple
sub-problems,

22 background

• join is a function combining multiple solved sub-problems into
a larger solution,

• f is a function solving an indivisible problem, i. e., the base case.

Applications like the discrete Fourier transformation, approximate
integration, or matrix multiplication can be expressed and imple-
mented using this algorithmic skeleton. The application developer
provides implementations for the functions required by the algorith-
mic skeleton to obtain a program which can be applied to the input
data.

An algorithmic skeleton has a parallel implementation. In the exam-
ple of the DC skeleton, the implementation follows the well-known
divide & conquer technique which divides problems into multiple
sub-problems which can be solved independently in parallel. The im-
plementation of the algorithmic skeleton hides the complexities of
parallelism from the user. It, therefore, provides a higher-level inter-
face abstracting away the details of the parallel execution, including
low-level details like launching multiple threads, as well as synchro-
nization and communication of threads.

a classification of algorithmic skeletons Algorithmic
skeletons can broadly be classified into three distinct classes [72]:

• data-parallel skeletons transform typically large amounts of data,

• task-parallel skeletons operate on distinct tasks which potentially
interact with each other,

• resolution skeletons capture a family of related problems.

Examples of data-parallel skeletons are map which applies a given
function to each element of its input data in parallel, or reduce which
performs a parallel reduction based on a given binary operator. Well
known task-parallel skeletons are farm (a. k. a., master-worker) where in-
dependent tasks are scheduled for parallel execution by the workers,
or pipeline where multiple stages are connected sequentially and the
execution of all stages can overlap to exploit parallelism. Finally, the
discussed DC skeleton is an example of a resolution skeleton which
captures the family of problems which can be solved by applying the
divide & conquer technique.

In this thesis, we will mainly focus on data-parallel skeletons, as
they are especially suitable for the data-parallel GPU architecture. We
will also introduce two new resolution skeletons which capture two
specific application domains for which we can provide efficient GPU
implementations as well.

2.3 structured parallel programming 23

2.3.2 Advantages of Structured Parallel Programming

Structured parallel programming offers various advantages over the
traditional unstructured parallel programming.

simplicity Structured parallel programming raises the level of
abstraction by providing higher-level constructs which serve as basic
building blocks for the programmer. Lower-level details are hidden
from the programmer and handled internally by the implementation
of the algorithmic skeletons. This simplifies the reasoning about pro-
grams and helps in the development process, as well as increases the
maintainability of the software.

safety and determinism Potentially dangerous low-level oper-
ations are not used directly by the programmer in structured parallel
programming. Therefore, issues like deadlocks and race conditions
can be entirely avoided – given a correct and safe implementation
of the provided algorithmic skeletons. Furthermore, the high-level se-
mantic of the algorithmic skeletons can guarantee determinism, while
the lacking of determinism due to the parallel execution is a major
concern in low-level, unstructured parallel programming; this con-
cern complicates development and debugging of the software.

portability Algorithmic skeletons offer a single high-level inter-
face but can be implemented in various ways on different hardware
systems. Existing skeleton libraries target distributed systems [3, 103,
112], shared memory systems like multi-core CPUs [5, 35, 108], and
– as we will discuss in this thesis – systems with multiple GPUs as
well. In contrary, unstructured parallel programming commits to a
low-level programming approach targeting a particular hardware ar-
chitecture, thus, making portability a major issue. Furthermore, al-
gorithmic skeletons evolved from functional programming and are,
therefore, by-nature composabel and offer a high degree of re-use.

Another issue of portability is the portability of performance: can
a certain level of performance be obtained when switching from one
hardware architecture to another? This is virtually absent from low-
level unstructured parallel programming as programmers apply low-
level hardware-specific optimizations to achieve high performance.
These optimizations are usually not portable, as we will show later
in Chapter 5. Performance portability is a challenging and timely re-
search topic which we address in this thesis by introducing a novel
approach using structured parallel programming to achieve perfor-
mance portability.

24 background

predictability The structure and regularity of structured par-
allel programming allows to build performance models which can
be used in the development process to estimate the performance of
the developed software. Many research projects are devoted to this
topic, showing that it is possible to predict the runtime of programs
expressed with algorithmic skeletons [8, 19, 47, 84, 142]. Examples for
related work in this area include work on particular algorithmic skele-
tons [19], work targeted towards distributed and grid systems [8], and
recently work targeting real-time systems [142].

performance and optimizations Many studies have shown
that structured parallel programs can offer the same level of perfor-
mance as programs implemented and optimized with traditional un-
structured techniques. Examples include application studies on grid
systems [8], distributed systems [34], as well as systems featuring
multi-core CPUs [6]. In this thesis, we will investigate the performance
of programs expressed with data-parallel algorithmic skeletons on
systems with one or multiple GPUs.

The high-level semantic of algorithmic skeletons enable high-level
optimizations like the rewrite rules presented in [75]. These opti-
mizations exploit information about the algorithmic structure of a
program which is often hard or impossible to extract from unstruc-
tured programs. In this thesis, we will present a system for encoding
and systematically applying such high-level optimizations to gener-
ate highly optimized code from a high-level, skeleton-based program
representation.

2.4 summary

In this chapter we have discussed the technical background of this
thesis. We first introduced the design of modern parallel processors
and discussed the differences between multi-core CPUs and GPUs.
Then, we looked at how these processors are currently programmed
identifying some problems of parallel programming, including non-
determinism, race conditions, and deadlocks. We particular looked at
the OpenCL programming approach and how it can be used for pro-
gramming multi-core CPUs and GPUs. Finally, we introduced struc-
tured parallel programming as an alternative approach which avoids
many drawbacks of traditional parallel programming techniques.

In the next part of the thesis we introduce a novel structured paral-
lel programming model for single- and multi-GPU systems address-
ing the programmability challenge.

Part II

T H E S K E L C L H I G H - L E V E L
P R O G R A M M I N G M O D E L

3H I G H - L E V E L P R O G R A M M I N G F O R
M U LT I - G P U S Y S T E M S

In this chapter we address the first main challenge identified in
Chapter 1: Programmability of modern parallel systems. We will
see how structured parallel programming significantly simpli-

fies the task of programming for parallel systems. We will focus on
programming of single- and multi-GPU systems throughout the the-
sis, but the observations made here are more generic and also valid
when programming other parallel systems.

We will first motivate the need for high-level abstractions using
a real-world OpenCL application from the field of medical imaging.
Then we introduce the SkelCL programming model and its implemen-
tation as a C++ library which addresses the lack of high-level ab-
stractions in state-of-the-art GPU programming models. The follow-
ing Chapter 4 will provide several application studies to thoroughly
evaluate the usefulness and performance of the abstractions and im-
plementation presented in this chapter.

3.1 the need for high-level abstractions

We start the discussion of programming for parallel systems and in
particular for GPU systems by looking thoroughly at an application
example. By doing so we will identify challenges faced by applica-
tion developers which arise from typical characteristics of parallel
hardware architectures. We will then derive from these challenges
requirements for a potential high-level programming model.

3.1.1 Challenges of GPU Programming

We choose to investigate a real-world application rather than a simple
benchmark, in order to identify not only fundamental challenges ev-
ery application developer targeting GPU systems faces, but also prac-
tical programming challenges which become only visible for more
complex applications, e. g., managing the execution of multiple com-
pute kernels.

Our example application is the LM OSEM algorithm [133, 137] for
image reconstruction used in Positron Emission Tomography (PET).
In PET, a radioactive substance is injected into a human or animal
body, which is then placed inside a PET scanner that contains sev-
eral arrays of detectors. As the particles of the applied substance de-

27

28 high-level programming for multi-gpu systems

Figure 3.1: Two detectors register an event in a PET-scanner

cay, positrons are emitted (hence the name PET) and annihilate with
nearby electrons, such that two photons are emitted in the opposite di-
rections (see Figure 3.1). These “decay events” are registered by two
opposite detectors of the scanner which records these events. Data
collected by the PET scanner are then processed by a reconstruction
algorithm to obtain a resulting image.

3.1.1.1 The LM OSEM Algorithm

List-Mode Ordered Subset Expectation Maximization [133] (called
LM OSEM in the sequel) is a block-iterative algorithm for 3D image
reconstruction. LM OSEM takes a set of events from a PET scanner
and splits them into s equally sized subsets. Then, for each subset
Sl, l ∈ 0, . . . , s− 1, the following computation is performed:

fl+1 = flcl; cl =
1

ATN1

∑
i∈Sl

(Ai)
T 1

Aifl
. (3.1)

Here f ∈ Rn is a 3D image in vector form with dimensions n =

(X× Y × Z), A it the so-called system matrix, element aik of row Ai
is the length of intersection of the line between the two detectors
of event i with voxel k of the reconstruction image, computed with
Siddon’s algorithm [139]. As storing the entire system matrix A is
impossible due to memory constrains each row Ai is computed inde-
pendently as it is needed. 1

/
ATN1 is the so-called normalization vec-

tor; since it can be precomputed, we will omit it in the following. The
multiplication flcl is performed element-wise. Each subset’s compu-
tation takes its predecessor’s output image as input and produces a
new, more precise image.

The structure of a sequential LM OSEM implementation is shown
in Listing 3.1. The outermost loop iterates over the subsets. The first
inner loop (step 1, line 7—line 11) iterates over subset’s events to
compute cl, which requires three sub-steps: row Ai is computed from
the current event using Siddon’s algorithm; the local error for row Ai
is computed and, finally, added to cl. The second inner loop (step 2,
line 14—line 16) iterates over all elements of fl and cl to compute
fl+1.

3.1 the need for high-level abstractions 29

1 // input: subsets of recorded events
2 // output: image estimate f
3 for (int l = 0; l < subsets; l++) {
4 // read subset S
5

6 // step 1: compute error image cl
7 for (int i = 0; i < subset_size; i++) {
8 // compute Ai from subset S
9 // compute local error

10 // add local error to cl
11 }
12

13 // step 2: update image estimate f
14 for (int k = 0 ; k < image_size; k++) {
15 if (c_l[k] > 0.0) { f[k] = f[k] * c_l[k]; }
16 }
17 }

Listing 3.1: Sequential code for LM OSEM comprises one outer loop with
two nested inner loops.

3.1.1.2 Parallelization of LM OSEM in OpenCL

LM OSEM is a rather time-consuming algorithm that needs paral-
lelization: a typical 3D image reconstruction processing 6 · 107 input
events for a 150× 150× 280 voxel PET image takes more than two
hours when executed sequentially on a modern PC.

The iterations of the outer loop in Listing 3.1 are inherently sequen-
tial, as in each iteration the image estimate computed by the previous
iteration is refined. Within one iteration we can parallelize the two
calculation steps across multiple GPUs as shown in Figure 3.2 for a
system comprising two GPUs. Note that the two steps require differ-
ent data distribution patterns:

Step 1: Subset’s events (S) are copied from the CPU to all GPUs
(upload) to compute the summation parts of cl concurrently.
This step requires that the complete image estimate fl is avail-
able on all GPUs.

Step 2: For computing the next image estimate fl+1 in parallel,
the current image estimate fl and the error image cl computed
in step 1 have to be distributed in disjoint parts (blocks) among
all GPUs.

Thus, the parallelization schema in Figure 3.2 requires a data re-
distribution phase between the two computation steps. During step
1, each GPU computes a partial sum of cl which are then summed
up and redistributed disjoinlty to all GPUs after step 1. Note that for

30 high-level programming for multi-gpu systems

G
P
U

0
C
P
U

G
P
U

1

S fl

S fl

S fl

cl

cl

⇒

⇒

cl

cl

cl

fl

fl

fl

fl

fl

⇒

⇒

fl+1

Upload Redistribution Download

Step 1 Step 2

Figure 3.2: Parallelization schema of the LM OSEM algorithm.

step 1, each GPU requires a full copy of the image estimate, while in
step 2 all GPUs update disjoint parts of it. After step 2, the disjoint
parts of the image estimate are copied from all GPUs back to the CPU
(download).

In the following, we describe how the phases in the parallelization
schema in Figure 3.2 are implemented using OpenCL.

upload Listing 3.2 shows a simplified OpenCL implementation of
the upload phase. Uploading of the event vector S is performed in
line 3—line 7, while line 10—line 14 upload the image estimate fl. In
OpenCL, we have to manage each GPU explicitly, therefore, for each
GPU, we manage an array of buffers (s_gpu in line 4 and f_gpu in
line 11) and we use a loop (line 1) to repeat all memory operations
for each GPU. For performance reasons, we use asynchronous copy
operations, specified using the CL_FALSE flag (line 4 and line 11): this
allows data transfers to multiple GPUs to overlap. We perform differ-
ent operations with S (distribute among all GPUs) and fl (copy to each
GPU), therefore, there are differences when specifying the amount of
bytes to copy (line 5 and line 12) and the offsets in the CPU memory
(line 6 and line 13). Altogether eleven such memory operations – each
with different amounts of bytes and offsets – appear in the OpenCL
source code.

step 1 The implementation of step 1 performs the three sub-steps
shown in Listing 3.1. Because of memory restrictions on the GPU, the
OpenCL implementation is not straightforward, therefore, we will not
show the detailed code here. An OpenCL kernel is launched where
each work-item processes multiple events one after another. For each
event first Ai is computed, then the local error for Ai is computed
using the current image estimate fl which is finally added to cl.

In Equation (3.1) Ai represents the path of a detected line through
the 3D image space. In mathematics it is convenient to think of this

3.1 the need for high-level abstractions 31

1 for (int gpu = 0; gpu < gpu_count; gpu++) {
2 // upload S
3 clEnqueueWriteBuffer(command_queue[gpu],
4 s_gpu[gpu], CL_FALSE, 0,
5 sizeof(float) * size_of_s / gpu_count,
6 (void*)&s_cpu[gpu * size_of_s / gpu_count],
7 0, NULL, NULL);
8

9 // upload fl
10 clEnqueueWriteBuffer(command_queue[gpu],
11 f_gpu[gpu], CL_FALSE, 0,
12 sizeof(float) * size_of_f,
13 (void*)&f_cpu[0],
14 0, NULL, NULL);
15 }

Listing 3.2: Implementation of the upload phase in OpenCL (omitting error
checks for brevity).

as a sparse vector containing the length of the intersection of the line
with a given voxel in the image space. As most voxels are not inter-
sected by the line, most entries in the vector remain zero. Therefore,
in the OpenCL code Ai is represented as an array of pairs, where the
first entry of each pair is the index of a voxel in the image space and
the second entry is the length of the intersection with this voxel.

Synchronization between work-items in OpenCL is restricted, i. e.,
synchronization is only allowed between work-items organized in the
same work-group. Therefore, it is not possible to efficiently protect
the writing operation to cl to avoid race conditions. We have con-
ducted studies and found that for this particular algorithm these race
conditions are acceptable as they do not substantially decrease the
numerical accuracy of the computed result [137].

redistribution Listing 3.3 shows an OpenCL pseudocode for
the redistribution phase. To download the data from all GPUs, we
use the clEnqueueReadBuffer function (line 4) and perform the oper-
ations asynchronously, but this time, we have to wait for the opera-
tions to finish. For such synchronizations, OpenCL uses events, associ-
ated with an operation (line 4) for waiting for the operation to finish
(line 6). After all downloads have finished, we combine the different
values of cl to a new value of cl on the CPU (line 9), and upload
the blocks of cl to the GPUs. Even if we only copied data between
GPUs, without processing them on the CPU, we still would have to
download them to the CPU because direct GPU-to-GPU transfers are
currently not possible in any version of OpenCL.

32 high-level programming for multi-gpu systems

1 // download all c_l values from the GPUs to the CPU
2 cl_event events[gpu_count];
3 for (int gpu = 0; gpu < gpu_count; gpu++) {
4 clEnqueueReadBuffer(..., &events[gpu]);
5 }
6 clWaitForEvents(gpu_count, events);
7

8 // combine data on CPU
9 combine(...);

10

11 // upload block of the new c_l version to each GPU
12 for (int gpu = 0; gpu < gpu_count; gpu++) {
13 clEnqueueWriteBuffer(...);
14 }

Listing 3.3: OpenCL pseudocode for the redistribution phase

step 2 Listing 3.4 shows the implementation of step 2. Computa-
tions are specified as kernels in OpenCL which are created from the
source code specifying the computation. The computation in step 2 is,
therefore, described as a string in line 3—line 7. The operations used
here are the same as in the sequential code.

For executing the computations of step 2, we have to perform the
following steps for each GPU:

• create an OpenCL kernel from the source code (requires 50 lines
of code in OpenCL);

• compile the kernel specifically for the GPU (requires 13 lines of
code in OpenCL);

• specify kernel arguments one-by-one using the clSetKernelArg
function (line 14—line 24);

• specify execution environment, i. e., how many instances of the
kernel to start (line 27—line 29);

• launch the kernel (line 31—line 34).

download The implementation of the download phase is similar
to the upload phase as shown in Listing 3.2.

3.1 the need for high-level abstractions 33

1 // step 2 (in Figure 3.2)
2 source_code_step_2 =
3 "kernel void step2(global float* f, global float* c_l,
4 int offset, int size) {
5 int id = get_global_id(0) + offset;
6 if (id < size && c_l[id] > 0.0){ f[id] = f[id]*c_l[id];}
7 }";
8

9 for (int gpu = 0; gpu < gpu_count; gpu++) {
10 // create kernel (50 lines of code)
11 // compile kernel (13 lines of code)
12

13 // specifying kernel arguments:
14 clSetKernelArg(kernel_step2[gpu], 0, sizeof(cl_mem),
15 (void*)&f_buffer[gpu]);
16 clSetKernelArg(kernel_step2[gpu], 1, sizeof(cl_mem),
17 (void*)&c_l_buffer[gpu]);
18 int offset = gpu * (size_of_f / gpu_count);
19 clSetKernelArg(kernel_step2[gpu], 2, sizeof(int),
20 (void*)&offset);
21 int size = MIN((gpu + 1) * (size_of_f / gpu_count),
22 size_of_f);
23 clSetKernelArg(kernel_step2[gpu], 3, sizeof(int),
24 (void*)&size);
25

26 // specify execution environment
27 int local_work_size[1] = { 32 };
28 int global_work_size[1] =
29 { roundUp(32, size_of_f / gpu_count) };
30 // launch the kernel
31 clEnqueueNDRangeKernel(
32 command_queue[gpu], kernel_step2[gpu],
33 1, NULL, &global_work_size, &local_work_size, 0,
34 NULL, NULL); }

Listing 3.4: Implementation of step 2 in OpenCL (omitting error checks for
brevity).

34 high-level programming for multi-gpu systems

3.1.2 Requirements for a High-Level Programming Model

The described implementation of the example application reveals the
main problems and challenges that application developers have to
overcome when targeting GPU systems. Our analysis shows that to
simplify programming for a system with multiple GPUs, at least the
following three high-level abstraction are desirable:

parallel container data types Compute-intensive applica-
tions typically operate on a (possibly big) set of data items. As shown
in Listing 3.2, managing memory is error-prone because low-level de-
tails, like offset calculations, have to be programmed manually.

A high-level programming model should be able to make collec-
tions of data automatically accessible to all processors in a system
and it should provide an easy-to-use interface for the application de-
veloper.

recurring patterns of parallelism While each application
performs (of course) different concrete operations, the general struc-
ture of parallelization often resembles parallel patterns that are com-
monly used in many applications. In step 1, for computing the error
image cl, the same sequence of operations is performed for every
event from the input subset, which is the well-known map pattern of
data-parallel programming [76]. In step 2, two images (the current
image estimate fl and the error image cl) are combined element-wise
into the output image (fl+1), see line 6 of Listing 3.4, which is again
a well-known pattern of parallelism commonly called zip.

It would be, therefore, desirable to express the high-level structure
of an application using pre-defined common patterns, rather than
describing the parallelism manually in much detail.

distribution and redistribution mechanisms To achieve
scalability of applications on systems comprising multiple GPUs, it
is crucial to decide how the application’s data are distributed across
all available GPUs. Distributing and re-distributing data in OpenCL
is cumbersome because data transfers have to be managed manually
and performed via the CPU, as shown in Listing 3.2 and Listing 3.3.

Therefore, it is important for a high-level programming model to
allow both for describing the data distribution and for changing the
distribution at runtime.

3.2 the skelcl programming model 35

3.2 the skelcl programming model

SkelCL (Skeleton Computing Language) is a high-level programming
model targeting multi-GPU systems. It is developed as an extension
of the standard OpenCL programming model [119].

SkelCL adds three main high-level features to OpenCL which we
identified as desirable in Section 3.1.2:

• parallel container data types for unified memory management be-
tween CPU and (multiple) GPUs;

• recurring patterns of parallelism (a. k. a. algorithmic skeletons) for
easily expressing parallel computation patterns;

• data distribution and redistribution mechanisms for transparent
data transfers in multi-GPU systems.

SkelCL inherits all advantageous properties of OpenCL, including its
portability across different heterogeneous parallel systems. SkelCL is
designed to be fully compatible with OpenCL: arbitrary parts of a
SkelCL code can be written or rewritten in OpenCL, without influenc-
ing program’s correctness.
In the remainder of this section we discuss the design of the SkelCL
programming model in more detail. Its implementation as a C++ li-
brary will be discussed in the following section.

3.2.1 Parallel Container Data Types

SkelCL offers the application developer two container classes – vec-
tor and matrix – which are transparently accessible by both, CPU and
GPUs (or using OpenCL’s terminology, host and devices). The vector
abstracts a one-dimensional contiguous memory area while the ma-
trix provides an interface to a two-dimensional memory area. The
SkelCL container data types have two major advantages as compared
with OpenCL.

The first advantage is its automatic memory management. When a
container is created on the host, memory is allocated on the devices
automatically; when a container on the host is deleted, the memory
allocated on the devices is freed automatically. In OpenCL memory
has to be allocated and freed manually.

The second advantage is that the necessary data transfers between
the host and devices are performed automatically and implicitly. Be-
fore performing a computation on container types, the SkelCL system
ensures that all input containers’ data is available on all participating
devices. This may result in implicit data transfers from the host to
device memory, which in OpenCL requires explicit programming, as
we saw in Listing 3.2 in Section 3.1.1. Similarly, before any data is ac-
cessed on the host, the implementation of SkelCL implicitly ensures

36 high-level programming for multi-gpu systems

that this data on the host is up-to-date by performing necessary data
transfers automatically. Using the clEnqueueWriteBuffer (see line 3—
line 7 in Listing 3.2) and clEnqueueReadBuffer (see Listing 3.3) func-
tions nine arguments have to be specified to perform a single data
transfer in OpenCL. The SkelCL container classes shield the program-
mer from these low-level operations like memory allocation (on the
devices) and data transfers between host and device.

Developing applications working with two-dimensional data for
modern parallel architectures is cumbersome and challenging, since
efficient memory handling is essential for high performance. In case
of GPUs, it is key for achieving good performance to exploit the mem-
ory hierarchy by using the fast but small on-chip memory. Therefore,
in addition to the vector as a one-dimensional abstract data struc-
ture, SkelCL offers a specific abstract data type for handling two-
dimensional data, the matrix. We will see later in Section 3.2.4.4 and
Section 3.3 how SkelCL automatically exploits the memory hierarchy
to improve performance.

3.2.2 Algorithmic Skeletons

To shield the application developer from the low-level programming
issues discussed in the previous section, SkelCL extends OpenCL by
introducing high-level programming patterns, called algorithmic skele-
tons [36]. Formally, a skeleton is a higher-order function that executes
one or more user-defined (so-called customizing) functions in a pre-
defined parallel manner hiding the details of parallelism and com-
munication from the user [76].

SkelCL provides four basic data-parallel skeletons: map, zip, reduce,
and scan, as well as two more advanced skeletons targeting specific
application domains: stencil and allpairs. In this section we will look at
the basic skeletons, the advanced skeletons will be discussed in Sec-
tion 3.2.4. The four basic skeletons have been selected, because they
have been proven to be useful for a broad range of applications. More-
over, these skeletons can be efficiently implemented on GPUs as their
computation patterns match the data-parallel execution model imple-
mented by GPUs.

notation We will use a notation strongly inspired by the Bird-
Meertens formalism [18]. Function application is written with a space
between the function name and the argument, i. e., f x. We use paren-
thesis solely for enforcing precedence or for structuring complex ex-
pressions to make them easier to understand. Function application is
left associative and functions are curried, i. e., f x y means (f x) y and
not f (x y). For sequential function composition we use the ◦ operator,
i. e., (f ◦ g) x = f (g x). Function application binds stronger than any
other operation, e. g., f x ◦ g y = (f x) ◦ (g y).

3.2 the skelcl programming model 37

We use various symbols, e. g., ⊕ and ⊗ as binary operators. We
write these operators using infix notation, i. e., x ⊕ y. Using paren-
thesis we can section a binary operator which we write using prefix
notation:

(⊕) x y = x⊕ y
(x ⊕) y = x⊕ y
(⊕ y) x = x⊕ y

This is a helpful notation to treat a binary operator syntactically like
an ordinary function.

As our data structures we use vectors written as ~x = [x1, x2, . . . , xn]
and matrices written as:

M =

m1,1 · · · m1,m
...

...
mn,1 · · · mn,m

 .

the map skeleton The map skeleton is a well-known basic algo-
rithmic skeleton, applying the customizing function to each element
of a container in parallel. This skeleton originates from the functional
programming world, where the map function is recognized as an im-
portant primitive for writing high-level code. In many programming
languages an equivalent sequential function exists, either known un-
der the same name, like in Haskell or Python, or by other names, like
transform in C++.

In SkelCL, the map skeleton can operate on vectors as well as matri-
ces. We start by formally defining the skeleton on vectors:

definition 3.1. Let ~x be a vector of size n with elements xi where 0 <
i 6 n. Let f be a unary customizing function defined on elements. The
algorithmic skeleton map is then defined as follows:

map f [x1, x2, . . . , xn]
def
= [f x1, f x2, . . . , f xn].

The definition for matrices is similar:

definition 3.2. Let M be an n ×m matrix with elements mi,j where
0 < i 6 n and 0 < j 6 m. Let f be a unary customizing function. The
algorithmic skeleton map is defined as follows:

map f

m1,1 · · · m1,m
...

...
mn,1 · · · mn,m

 def
=

f m1,1 · · · f m1,m
...

...
f mn,1 · · · f mn,m

 .

The output container of the map skeleton, either vector or matrix, can
be computed in parallel, because the computation of each single ele-
ment is independent of each other.

38 high-level programming for multi-gpu systems

A simple possible application of the map skeleton is negating all
the values in a vector:

neg ~x = map (−) ~x

the zip skeleton The zip skeleton operates on two containers
and combines them into one. As the map skeleton it is defined for
vectors and matrices as well.

definition 3.3. Let ~x and ~y be vectors of size n with elements xi and yi
where 0 < i 6 n. Let ⊕ be a binary customizing operator. The algorithmic
skeleton zip is defined as follows:

zip (⊕) [x1, x2, . . . , xn] [y1,y2, . . . ,yn]
def
= [x1 ⊕ y1, x2 ⊕ y2, . . . , xn ⊕ yn].

Again the definition for matrices is similar:

definition 3.4. Let M and N be n×m matrices with elements mi,j and
ni,j where 0 < i 6 n and 0 < j 6 m. Let ⊕ be a binary customizing
operator. The algorithmic skeleton zip is defined as follows:

zip (⊕)

m1,1 · · · m1,m
...

...
mn,1 · · · mn,m


n1,1 · · · n1,m

...
...

nn,1 · · · nn,m


def
=

m1,1 ⊕n1,1 · · · m1,m ⊕n1,m
...

...
mn,1 ⊕nn,1 · · · mn,m ⊕nn,m

 .

This definitions require the two input containers to be of exactly the
same size. The zip skeleton is parallelizeable in the same manner as
map, as each element of the output container can be computed in
parallel.

A possible application of the zip skeleton is performing pairwise
addition of two vectors:

add ~x ~y = zip (+) ~x ~y

the reduce skeleton The reduce skeleton computes a single
value from a vector by successively applying the binary customizing
function. In SkelCL, the reduce skeleton is only defined on vectors:

definition 3.5. Let ~x be a vector of size n with elements xi where 0 < i 6
n. Let ⊕ be an associative and commutative binary customizing operator
with the corresponding identity element⊕id. The algorithmic skeleton reduce
is defined as follows:

reduce (⊕) ⊕id [x1, x2, . . . , xn]
def
= x1 ⊕ x2 ⊕ · · · ⊕ xn.

3.2 the skelcl programming model 39

Requiring the operator to be associative and commutative enables ef-
ficient parallel implementations, which we will discuss in Section 3.3.
The identity element ⊕id can be used by the implementation, e. g., to
initialize intermediate variables or buffers.

A possible application of the reduce skeleton is to finding the maxi-
mum value of a vector:

maxValue ~x = reduce max 0 ~x

where: max a b =

{
a if a > b

b if a < b

the scan skeleton The scan skeleton (a. k. a., prefix-sum) yields
an output vector with each element obtained by applying the cus-
tomizing function to the elements of the input vector up to the cur-
rent element’s index. In SkelCL, the scan skeleton is only defined on
vectors:

definition 3.6. Let ~x be a vector of size n with elements xi where 0 <
i 6 n. Let ⊕ be an associative binary customizing operator with the corre-
sponding identity element ⊕id. The algorithmic skeleton scan is defined as
follows:

scan (⊕) ⊕id [x1, x2, . . . , xn]
def
= [⊕id, x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕ · · · ⊕ xn−1].

Even though the scan pattern seems inherently sequential, because
each individual result contains the results of its predecessor, efficient
parallel implementations do exist for this problem. Blelloch [21] stud-
ies this parallel pattern in great detail and efficient implementations
for GPUs exist [83] following his algorithmic ideas.

A possible application of the scan skeleton is the computation of
the prefix sum which can be used as part of the counting sort algo-
rithm [101] or for solving the list ranking problem [38].

prefixSum ~x = scan (+) 0 ~x

3.2.2.1 Parallel Programming with Algorithmic Skeletons

In SkelCL, rather than writing low-level kernels, the application devel-
oper customizes suitable skeletons by providing application-specific
functions which are often much simpler than kernels as they specify
an operation on basic data items rather than containers.

Skeletons can be customized and composed to express complex al-
gorithms. To demonstrate how to express computations with algorith-
mic skeletons let us consider three simple linear algebra applications:
scaling a vector with a constant, computing the sum of absolute val-
ues of a vector, and computing the dot product (a. k. a., inner product)

40 high-level programming for multi-gpu systems

of two vectors. These three applications are all part of the well-known
Basic Linear Algebra Subprograms (BLAS) [55, 56] library.

For scaling a vector with a constant α we use the map skeleton:

scal α ~x = map (f α) ~x

where: f α x = α× x

We use currying here to bind α to f, thus, producing a new unary
function used to customize map.

For computing the sum of absolute values we combine a map and
reduce skeleton.

asum ~x = reduce (+) 0
(

map (| . |) ~x
)

where: |a| =

{
a if a > 0

−a if a < 0

This definition can also be expressed in a more compositional style,
also known as point-free style, without mentioning the input vector ~x
and by using the ◦ operator:

asum = reduce (+) 0 ◦ map (| . |)

To compute the dot product of two vectors we compose a zip skele-
ton customized with multiplication and a reduce skeleton customized
with addition:

dot ~x ~y = reduce (+) 0
(

zip (×) ~x ~y
)

Algorithmic skeletons are not limited to linear algebra applications,
but can be used to implement a boarded range of application types
as we will discuss in Chapter 4. Among others, we will see an algorith-
mic skeleton based implementation of the real-world medial imaging
application example discussed at the beginning of this chapter.

3.2.3 Data Distribution and Redistribution

For multi-device systems, SkelCL’s parallel container data types (vec-
tor and matrix) abstract from the separate memory areas on multi-
ple OpenCL devices, i. e., container’s data is accessible by all devices.
Each device may access different parts of a container or may even
not access it at all. For example, when implementing work-sharing
on multiple GPUs, the GPUs will access disjoint parts of input data,
such that copying only a part of the vector to a GPU is more efficient
than copying the whole data to each GPU.

To simplify the partitioning of a container on multiple devices,
SkelCL introduces the concept of distributions which describe how the
container’s data is distributed among the available devices. It allows

3.2 the skelcl programming model 41

CPU

GPUs0 1

(a) single

CPU

GPUs0 1

(b) copy

CPU

GPUs0 1

(c) block

Figure 3.3: Distributions of a vector in SkelCL.

the application developer to abstract from the challenges of manag-
ing memory ranges which are shared or partitioned across multiple
devices: the programmer can think of a distributed container as of a
self-contained entity.

Four kinds of distributions are currently available in SkelCL: three
basic distributions and one more advanced distribution. We will in-
troduce and discuss the more advanced overlap distribution later in
Section 3.2.4.2.

The three basic distributions in SkelCL are: single, copy, and block
(see Figure 3.3 for distributing a vector on a system with two GPUs).
If distribution is set to single (Figure 3.3a), then vector’s whole data is
stored on a single GPU (the first GPU if not specified otherwise). The
copy distribution (Figure 3.3b) copies vector’s entire data to each avail-
able GPU. With the block distribution (Figure 3.3c), each GPU stores a
contiguous, disjoint chunk of the vector.

The same three distributions are provided also for the matrix con-
tainer as shown in Figure 3.4. The block distribution (Figure 3.4c) splits
the matrix into chunks of rows, which simplifies the implementation.

The application developer can set the distribution of containers ex-
plicitly, otherwise every skeleton selects a default distribution for its
input and output containers. Container’s distribution can be changed
at runtime: this implies data exchanges between multiple GPUs and
the CPU, which are performed by the SkelCL implementation implic-
itly. As seen earlier in this chapter, e. g., in Listing 3.3, implementing
such data transfers in standard OpenCL is a cumbersome task: data
has to be downloaded to the CPU before it is uploaded to the GPUs, in-
cluding the corresponding length and offset calculations; this results
in a lot of low-level code which becomes completely hidden when
using SkelCL.

A special situation arises when the distribution is changed from
the copy distribution to any other distribution. In this case each GPU
holds its own full copy of the data which might have been modified
locally on each GPU. In order to maintain SkelCL’s concept of a self-
contained container, these different versions are combined using a
user-specified function when the distribution is changed. If no func-
tion is specified, the copy of the first GPU is taken as the new version
of the container; the copies of the other GPUs are discarded.

42 high-level programming for multi-gpu systems

CPU

GPUs0 1

(a) single

CPU

GPUs0 1

(b) copy

CPU

GPUs0 1

(c) block

Figure 3.4: Distributions of a matrix in SkelCL.

3.2.4 Advanced Algorithmic Skeletons

The basic algorithmic skeletons presented in Section 3.2.2 are long
known in the functional and algorithmic skeleton communities. In
this section we will introduce two new more advanced algorithmic
skeletons, which are more restrictive. By limiting the use cases of
these novel algorithmic skeleton we are able to make more assump-
tions in the implementation and provide advanced optimizations on
modern multi-GPU systems.

The first new skeleton (stencil) is targeted towards stencil (a. k. a.,
nearest neighbor) computations, which are computations performed
for every element of a container while including neighboring ele-
ments in the computation. The second new skeleton (allpairs) com-
bines two matrix containers in an all-to-all fashion, which is a pattern
used in applications like N-body simulation or matrix multiplication.

For both skeletons we will first formally define them before look-
ing at possible use cases. Their implementations targeting multi-GPU
systems will be described in Section 3.3.

3.2.4.1 The Stencil Skeleton

Many numerical and image processing applications deal with two-
dimensional data and perform calculations on each data element
while taking neighboring elements into account. These type of ap-
plications are also known as stencil or nearest neighbor applications.
Figure 3.5 shows a visualization of a stencil application. For every
pixel in the left image (one pixel is highlighted in red in the mid-
dle) a function is applied which computes a weighted average of the
surrounding pixels (which are highlighted in orange) to produce the
resulting image on the right side. To facilitate the development of
such applications, we introduce the stencil skeleton that can be used
with both the vector and matrix data type.

The stencil skeleton is customized with three parameters: a unary
function f, an integer value d, and an out-of-bounds function h. The
skeleton applies f to each element of an input container while tak-
ing the neighboring elements within the range d in each dimension

3.2 the skelcl programming model 43

Figure 3.5: Visualization of the Gaussian blur stencil application.

into account. When neighboring elements are accesses at the bound-
aries of the container out-of-bound accesses occur. In these cases the
function h is called with the index causing the out-of-bound access
and returns a replacement value. We now formally define the stencil
skeleton. We start with the definition for vectors:

definition 3.7. Let ~x be a vector of size n with elements xi where 0 < i 6
n. Let f be an unary customizing function, d be a positive integer value, and
h be an out-of-bound handling function. The algorithmic skeleton stencil is
defined as follows:

stencil f d h [x1, x2, . . . , xn]
def
= [y1,y2, . . . ,yn]

where

yi = f [xi−d, . . . , xi+d] ∀ i : 0 < i 6 n
and

xj = h j ∀ j : −d < j 6 0 ∨n < j 6 n+ d.

The definition for matrices is similar:

definition 3.8. Let M be an n×m matrix with elements mi,j where 0 <
i 6 n and 0 < j 6 m. Let f be an unary customizing function, d be
an positive integer value, and h be an out-of-bound handling function. The
algorithmic skeleton stencil is defined as follows:

stencil f d h

m1,1 · · · m1,m
...

...
mn,1 · · · mn,m

 def
=

n1,1 · · · n1,m
...

...
nn,1 · · · nn,m


where

ni,j = f

mi−d,j−d · · · mi−d,j+d
...

...
mi+d,j−d · · · mi+d,j+d

 ∀ i, j 0 < i 6 n,

0 < j 6 m

and

44 high-level programming for multi-gpu systems

mi,j = h i j ∀ i, j −d < j 6 0 ∨n < j 6 n+ d,

−d < j 6 0 ∨m < j 6 m+ d
.

SkelCL currently supports a fixed set of choices for the out-of-
bound handling function h motivated by common cases of of bound
handling in image processing applications. This restriction could eas-
ily be lifted in the future. The stencil skeleton can currently be config-
ured to handle out-of-bound accesses in two possible ways:

1. a specified neutral value is returned (i. e., the out-of-bound func-
tion h is constant);

2. the nearest value inside the container is returned.

Possible applications for the stencil skeleton are image processing
applications or physics simulations (see Section 4.5 and Section 4.7).
A simple example application is the discrete Laplacian operator used in
image processing, e. g., for edge detection [152]. It computes a new
value for every pixel of an image by weighting and summing up its
direct neighboring pixel values, as follows:

laplacian M = stencil f 1 0 M

where:
f

mi−1,j−1 mi−1,j mi−1,j+1

mi,j−1 mi,j mi,j+1
mi+1,j−1 mi+1,j mi+1,j+1

 =

mi−1,j +mi,j−1 − 4×mi,j +mi,j+1 +mi+1,j

and 0 is the constant function always returning 0.

3.2.4.2 The overlap data distribution

Together with the stencil skeleton we introduce a new advanced dis-
tribution called overlap (Figure 3.6). The overlap distribution splits the
container into one chunk for each device, similarly to the block distri-
bution. In addition, each chunk consists of a number of continuous
elements (in case of the vector) or rows (in case of the matrix) which
are copied to the neighboring devices, similar to the copy distribution.
Therefore, the overlap distribution can be seen as a combination of
the block and copy distribution. The number of elements or rows at
the edges of a chunk which are copied to the neighboring devices are
called the overlap size.

The overlap distribution ensures that neighboring elements are al-
ways accessible even if the container is split across multiple devices.
The overlap distribution is, therefore, automatically selected as distri-
bution by the stencil skeleton automatically setting the overlap size to
the skeleton parameter d, which ensures that every device has access
to the necessary neighboring elements.

3.2 the skelcl programming model 45

CPU

GPUs0 1

(a) overlap

CPU

GPUs0 1

(b) overlap

Figure 3.6: Overlap distribution of a vector and matrix in SkelCL.

3.2.4.3 The Allpairs Skeleton

Allpairs computations occur in a variety of applications, ranging from
matrix multiplication and N-body simulations in physics [14] to pair-
wise Manhattan distance computations in bioinformatics [31]. These
applications share a common computational pattern: for two sets of
entities, the same computation is performed independently for all
pairs in which entities from the first set are combined with entities
from the second set. We propose the allpairs skeleton to simplify the
development of such applications. We represent the entries of both
sets as vectors of length d, where the cardinality of the first set is
n and the cardinality of the second set is m. We model the first set
as a n × d matrix A and the second set as a m × d matrix B. The
allpairs computation yields an output matrix C of size n×m with
ci,j = ai ⊕ bj, where ai and bj are row vectors of A and B, corre-
spondingly, and ⊕ is a binary operator defined on vectors.

We formally define the allpairs skeleton as follows:

definition 3.9. Let A be a n × d matrix, B be a m × d matrix, and C
be a n×m matrix, with their elements ai,j, bi,j, and ci,j respectively. The
algorithmic skeleton allpairs with customizing binary function ⊕ is defined
as follows:

allpairs (⊕)


a1,1 · · · a1,d

...
...

an,1 · · · an,d



b1,1 · · · b1,d

· ·
· ·

bm,1 · · · bm,d



def
=


c1,1 · · · c1,m

...
...

cn,1 · · · cn,m


where elements ci,j of the n×m matrix C are computed as follows:

ci,j = [ai,1 · · · ai,d]⊕
[
bj,1 · · · bj,d

]
.

46 high-level programming for multi-gpu systems

A

B

C

BT

1

2

3

(a)

A

BT

C

1

2

3

(b)

Figure 3.7: The allpairs computation schema. (a): element c2,3 3 is com-
puted by combining the second row of A 1 with the third row
of B 2 using the binary operator⊕. (b): the same situation where
the transpose of matrix B is shown.

Figure 3.7a illustrates this definition: the element c2,3 of matrix C
marked as 3 is computed by combining the second row of Amarked
as 1 with the third row of B marked as 2 using the binary opera-
tor ⊕. Figure 3.7b shows the same computation with the transposed
matrix B. This visualization shows how the structure of matrix C is
determined by the two input matrices A and B.

Let us consider two example applications which can be expressed
by customizing the allpairs skeleton with a particular function ⊕.

example 1 : The Manhattan distance (or L1 distance) is a measure
of distance which is used in many applications. In general, it is de-
fined for two vectors, ~x and ~y, of equal length d, as follows:

ManDist ~x ~y =

d∑
k=1

|xk − yk| (3.2)

In [31], the so-called Pairwise Manhattan Distance (PMD) is studied
as a fundamental operation in hierarchical clustering for data analy-
sis. PMD is obtained by computing the Manhattan distance for every
pair of rows of a given matrix. This computation for arbitrary matrix
A can be expressed using the allpairs skeleton customized with the
Manhattan distance defined in Equation (3.2):

PMD A = allpairs ManDist A A (3.3)

The n× n matrix computed by the customized skeleton contains the
Manhattan distance for every pair of rows of the input n× d matrix
A.

example 2 : Matrix multiplication is a basic linear algebra opera-
tion, which is a building block of many scientific applications. A n×d

3.2 the skelcl programming model 47

A

1 2 3 4

d

B

1

2

3

4

d

C

R

n

m

Figure 3.8: Memory access pattern of the matrix multiplication A×B = C.

matrix A is multiplied with a d×m matrix B, producing a n×m ma-
trix C = A× B whose element ci,j is computed as the dot product of
the ith row of A with the jth column of B. The dot product of two
vectors, ~a and ~b of length d, is computed as follows:

dotProduct ~a ~b =

d∑
k=1

ak × bk (3.4)

The matrix multiplication is expressed using the allpairs skeleton as:

A×B = allpairs dotProduct A BT (3.5)

where BT is the transpose of matrix B.

3.2.4.4 The Specialized Allpairs Skeleton

When targeting GPU architectures, implementing an optimized ver-
sion of the allpairs skeleton is possible if certain assumptions about
the customizing function f can be made. In this section, we will in-
vestigate the properties of f necessary for an optimized GPU imple-
mentation. In particular we will analyze the memory access pattern
of the matrix multiplication as the memory accesses turns out to be
crucial for the performance. We then observe that the identified mem-
ory access pattern can also be found in other allpairs computations
and, therefore, define a specialized version of the allpairs skeleton,
which is suitable for applications having this pattern.

memory access pattern of the matrix multiplication

In Figure 3.8 the memory access pattern of the matrix multiplication
for 4× 4 matrices is shown. To compute the element R of the result
matrix C, the first row of matrix A and the first column of matrix B
are combined. In the skeleton-based code, these two vectors are used
by the customizing function f, which is the dot product in case of the
matrix multiplication. The dot product performs a pairwise multipli-
cation of the two vectors and then sums up the intermediate result. In

48 high-level programming for multi-gpu systems

the example, the two elements marked as 1 are multiplied first and
the intermediate result is stored; then, the next elements (marked as
2) are multiplied and the result is added to the intermediate result,
and so forth.

A key observation is, that other applications share the same mem-
ory access pattern as the matrix multiplication shown in Figure 3.8.
For example, the customizing function of the pairwise Manhattan dis-
tance as defined by Equation (3.2) follows obviously the same mem-
ory access pattern as the matrix multiplication. To find a common
representation for a customizing function with this pairwise access
pattern, we describe it as a sequential composition of two basic algo-
rithmic skeletons: zip and reduce.

For the reduce skeleton customized with ⊕ and corresponding iden-
tity element ⊕id, and the zip skeleton customized with ⊗ we can se-
quentially compose them as follows:

reduce (⊕) ⊕id
(

zip (⊗) ~a ~b
)

=

reduce (⊕) ⊕id
(

zip (⊗) [a1 · · · an] [b1 · · · bn]
)

=

(a1 ⊗ b1) ⊕ · · · ⊕ (an ⊗ bn)

This composition of the two customized skeletons yields a function
which we denote zipReduce; it takes two input vectors and produces
a single scalar value:

zipReduce (⊕) ⊕id (⊗) ~a ~b
def
= reduce (⊕) ⊕id

(
zip (⊗) ~a ~b

)
Following the definition of zipReduce, we can express the customiz-

ing function of the Manhattan distance as follows. We use the binary
operator a	 b = |a− b| as the customizing function for zip, and ad-
dition as the customizing function for the reduce skeleton:

ManDist ~a ~b =

n∑
i=1

|ai − bi| = (a1 	 b1) + · · ·+ (an 	 bn)

= zipReduce (+) 0 () [a1 · · · an] [b1 · · · bn]

Similarly, we can express the dot product (which is the customizing
function of matrix multiplication) as a zip-reduce composition, by
using multiplication for customizing the zip skeleton and addition
for customizing the reduce skeleton:

dotProduct ~a ~b =

n∑
i=1

ai × bi = (a1 × b1) + · · ·+ (an × bn)

= zipReduce (+) 0 (×) a b

3.3 the skelcl library 49

definition of the specialized allpairs skeleton We can
now specialize the generic Definition 3.9 of the allpairs skeleton by
employing the sequential composition of the customized reduce and
zip skeletons for customizing the allpairs skeleton. From here on, we
refer to this specialization as the allpairs skeleton customized with zip-
reduce.

definition 3.10. Let A be a n× d matrix, B be a m× d matrix, and C be
a n×m matrix, with their elements ai,j, bi,j, and ci,j respectively. Let ⊕ be
an associative binary customizing operator with the corresponding identity
element ⊕id. Let ⊗ be a binary customizing operator. The specialized algo-
rithmic skeleton allpairs customized with zip-reduce is defined as follows:

allpairs (⊕) ⊕id (⊗)


a1,1 · · ·a1,d

...
...

an,1 · · ·an,d



b1,1 · · ·b1,d

· ·
· ·
bm,1 · · ·bm,d



def
=


c1,1 · · · c1,m

...
...

cn,1 · · · cn,m


where elements ci,j of the n×m matrix C are computed as follows:

ci,j = zipReduce (⊕) ⊕id (⊗) [ai,1 · · · ai,d]
[
bj,1 · · · bj,d

]
.

While not every allpairs computation can be expressed using this
specialization, many real-world problems can. In addition to the ma-
trix multiplication and the pairwise Manhattan distance examples are
the pairwise computation of the Pearson correlation coefficient [31]
and estimation of Mutual Informations [50]. The composition of zip
and reduce is well known in the functional programming world. The
popular MapReduce programming model by Google has been inspired
by a similar composition of the map and reduce skeletons. [104] exten-
sively discusses the relation of MapReduce to functional program-
ming.

3.3 the skelcl library

In this section we discuss the SkelCL library – our implementation
of the SkelCL programming model. It provides a C++ API that im-
plements the features of the SkelCL programming model, and thus
liberates the application developer from writing low-level code. In
addition, the library provides some commonly used utility functions,
e. g., for program initialization. The SkelCL library is open source soft-
ware and available at: http://skelcl.uni-muenster.de.

http://skelcl.uni-muenster.de

50 high-level programming for multi-gpu systems

1 #include <SkelCL/SkelCL.h>
2 #include <SkelCL/Zip.h>
3 #include <SkelCL/Reduce.h>
4 #include <SkelCL/Vector.h>
5

6 float dotProduct(const float* a, const float* b, int n) {
7 using namespace skelcl;
8 skelcl::init(1_device.type(deviceType::ANY));
9

10 auto mult = zip([](float x, float y) { return x*y; });
11 auto sum = reduce([](float x, float y){ return x+y; }, 0);
12

13 Vector<float> A(a, a+n); Vector<float> B(b, b+n);
14

15 Vector<float> C = sum(mult(A, B));
16

17 return C.front();
18 }

Listing 3.5: Implementation of the dot product computation in SkelCL.

We start our discussion with an example showing how to use the
SkelCL library. We describe the syntax used to represent the SkelCL
programming model introduced in the previous section. This will in-
clude a discussion of C++ techniques used to implement the library.
We then shift the focus to the implementations of the memory man-
agement, algorithmic skeletons, and distributions.

3.3.1 Programming with the SkelCL Library

Listing 3.5 shows the implementation of the dot product computa-
tion, discussed in the previous section, in SkelCL. After including the
appropriate SkelCL headers (line 1—line 4) the SkelCL library can be
initialized as shown in line 8. This will perform the initializations
required by OpenCL. The argument provided to the init function
specifies how many and which OpenCL devices should be used by
SkelCL. Here a single device should be used which can be of any type,
i. e., it can be either a CPU or a GPU. The dot product is specified us-
ing the zip and reduce skeletons. The skeletons are created using zip
(line 10) and reduce (line 11) functions which expect the customizing
functions of the skeletons as arguments. In this example we use C++
lambda expressions (line 10 and line 11) to specify the customizing
functions of the skeletons. We create the two input Vectors from C
style pointers (line 13). In line 15 we perform the computation by ap-
plying the customized skeletons to the data, before we finally return
the computed result in line 17.

3.3 the skelcl library 51

Listing 3.5 shows that the SkelCL library integrates nicely with C++:
the interface of the Vector class looks familiar to C++ programmers
and the usage of modern C++ features like lambda expressions, type
deduction (auto), and user-defined literals simplify the programming
as functions can be defined directly inline, type information can be
omitted, and the specification of which devices to use can be written
intuitively.

We will now discuss how our implementation enables this comfort-
able level of integrating SkelCL with C++.

3.3.2 Syntax and Integration with C++

The SkelCL library is built on top of OpenCL. This offers clear benefits
as well as introduces technical challenges. One of the technical chal-
lenges is, that OpenCL requires the kernel to be specified as a string
in the host program. While this enables portability across different
hardware architectures, it also introduces a burden on the applica-
tion developer as strong typing cannot be guaranteed statically when
the host program is compiled. For the implementation of SkelCL, we
choose to address this issue using a two-step implementation, which
is visualized in Figure 3.9. In the first step, a custom compiler trans-
forms the source code as seen in Listing 3.5 to a representation where
the kernel computations are represented as strings as required by
OpenCL. In the second step, the transformed program is compiled
using a traditional C++ compiler to produce the final executable.

This allows ourselves to free the users from writing strings in their
application code and maintain the usual type safety guarantees from
C++ at compile time. Furthermore, we implemented type inference
capabilities in our source-to-source compiler to free the application
developer from specifying type information explicitly. Our two-step
design also allows application developers to compile their application
code into a form which then can be deployed on systems where it
might be difficult to install a custom compiler.

In the next paragraph, we will start the discussion of our source-to-
source compiler. We will discuss how our custom compiler, together
with our template-based implementation, helps to maintain strong
type safety at compile time. Finally, we will look at issues regarding
the integration with C++ like sharing code between host and device
code.

the custom skelcl compiler To allow a deep integration of
SkelCL code with C++, we implemented a custom compiler: skelclc.
We leverage the LLVM infrastructure [105] for building this compiler.
LLVM and the related Clang project offer well-defined application
programming interfaces for writing C and C++ related compiler tools.
In particular the LibTooling API allows for writing tools which search

52 high-level programming for multi-gpu systems

#include <SkelCL/SkelCL.h>

float dotProduct(
 const float* a,
 const float* b,
 int n) {
 using namespace skelcl;
 auto mult =
 zip([](float x, float y)
 { return x*y; });
 ...
}

#include <SkelCL/SkelCL.h>

float dotProduct(
 const float* a,
 const float* b,
 int n) {
 using namespace skelcl;
 auto mult =
 Zip<C<float>(C<float>,
 C<float>)>(
 "float func(float x,”
 “ float y)"
 " { return x*y; }"),
 "func");
 ...
}

skelclc
Compiler

SkelCL
library

001000110110100101101110011
000110110110001110101011001
000110010100100000001111000
101001101101011011001010110
110001000011010011000010111
101010011011010110110010101
101100010000110100110000101
110011010000011111000100100
010111000110110001100001011
000100110010101101100011110
110110110001110011011101000
011101001110011011010110110
010101101100011000110110110
000111010011001000110111101
110100011100000111001001101
111011001000111010101100011

Traditional
C++

Compiler

Step 1

Step 2

OpenCL

Figure 3.9: Overview of the SkelCL implementation. In the first step, the
custom skelclc compiler transforms the initial source code into
a representation where kernels are represented as strings. In
the second step, a traditional C++ compiler generates an exe-
cutable by linking against the SkelCL library implementation
and OpenCL.

3.3 the skelcl library 53

for particular patterns in the abstract syntax tree (AST) which is rep-
resenting the source code and perform actions on the found code
fragments. The skelclc custom compiler does exactly this. For exam-
ple, the custom compiler searches for an expression like this:

auto mult = zip([](float x, float y){ return x*y; });

Listing 3.6: SkelCL code snippet before transformation.

and replaces it with:

auto mult = Zip<Container<float>(Container<float>,
Container<float>)>(

Source("float func(float x, float y)"
" { return x*y; }"), "func");

Listing 3.7: SkelCL code snippet after transformation.

In this example, the zip function has been transformed into a call
of the constructor of the Zip class and the lambda expression has
been transformed into a string. Furthermore, type information that
has been inferred from the lambda expression, has been added to the
templated Zip class.

The user is free to write the expression in Listing 3.7 explicitly, but
it is arguably more convenient to write the expression as in Listing 3.6
and let skelclc perform the transformation automatically.

For every skeleton available in SkelCL, there exists a function like
zip which is transformed by skelclc to a call of the constructor of
the corresponding skeleton class.

maintaining type safety Each skeleton is represented by a
templated class, as seen in Listing 3.7 for the zip skeleton. The tem-
plate arguments of the skeleton define the types which can be used
when executing the skeleton. For a skeleton of type skeleton<T(U)>,
an object of type U has to be provided on execution to receive an ob-
ject of type T. In this respect skeletons behave exactly like functions in
C++ which can be represented using the std::function<T(U)> tem-
plate class. Skeletons taking more then one argument (like the zip
skeleton) are represented as skeleton<T(U, V)>.

When performing the transformations, skelclc infers the types
used as template arguments of the skeleton class. To do so, it deter-
mines the types of the lambda expression arguments and skeleton’s
result type. For Listing 3.6 this is: float and float as argument types
and float as the result type. The result type is inferred following
standard C++ rules. Based on these types, the template arguments of
the skeleton are constructed.

The skeletons map, zip, and stencil can operate on either Vector
or Matrix. For each of these skeletons there exist three kinds of fac-

54 high-level programming for multi-gpu systems

tory functions: 1) for creating a skeleton operating on vectors, e. g.,
mapVector; 2) for creating a skeleton operating on matrices, e. g., map-
Matrix; 3) for creating a skeleton capable of operating on both vectors
and matrices, e. g., map. To allow the latter case, the templated class
Container was introduced. Using the template specialization mecha-
nism, the mentioned skeletons have a special implementation when
Container is used as a template argument. In this case, the classes
provide a templated function call operator which can be used either
with Vector or Matrix.

Type safety is guaranteed, as the templated skeleton classes can
only be executed with a container of compatible type and the type
inference ensures that the user function has exactly the same type as
the template argument of the skeleton class. Therefore, applying the
user function to the input data is always a type-safe operation.

Because skeletons are strongly typed, the composition of skeletons
is type-safe as well, i. e., in Listing 3.5 type safety between the two
skeletons is guaranteed. If the result type of zip does not match the
input type of reduce, a compile time error would occur.

integration with c++ To allow a deep integration with C++,
a customizing function is allowed to make use of user-defined types
and make calls to other functions. The skelclc compiler detects these
behaviors and ensures that the definition of the user defined type
and the source code of all called functions is included in the source
code passed to the skeleton. This frees the user from providing type
definitions and source code twice, which would be required when
using OpenCL directly or using SkelCL without the skelclc compiler.
Code duplication should almost always be avoided as it can easily
lead to hardly maintainable code and subtle bugs.

additional arguments : In real-world applications (e. g., the
LM OSEM discussed in detail in Section 4.6), user-defined functions
often operate not only on a skeleton’s input vector, but may also take
additional inputs. With only a fixed number of input arguments, tra-
ditional skeletons would not be applicable for the implementation of
such applications. In SkelCL, skeletons can accept an arbitrary num-
ber of additional arguments which are passed to the skeleton’s cus-
tomizing function.

Listing 3.8 shows an example implementation in SkelCL of the
single-precision real-alpha x plus y (saxpy) computation – a commonly
used BLAS routine. The saxpy computation is a combination of scalar
multiplication of a with vector ~x followed by vector addition with ~y.
In Listing 3.8, the computation is implemented using the zip skeleton:
vectors ~x and ~y are passed as input, while factor a is passed to the cus-
tomizing function as an additional argument (line 5). The additional
argument is simply appended to the argument list when the skeleton

3.3 the skelcl library 55

1 float a = initScalar();
2

3 /* create skeleton Y <- a * X + Y */
4 auto saxpy = zip(
5 [](float x, float y, float a) { return a*x+y; });
6

7 Vector<float> X(SIZE); initVector(X);
8 Vector<float> Y(SIZE); initVector(Y);
9

10 Y = saxpy(X, Y, a); /* execute skeleton */

Listing 3.8: The BLAS saxpy computation using the zip skeleton with
additional arguments

is executed (line 10). Besides scalar values, like shown in the example,
vectors and matrices can also be passed as additional arguments to a
skeleton. When vectors or matrices are used as additional arguments,
the user is responsible to ensure that no race conditions occur when
writing to or reading from the container. If the container is only used
for reading, it is guaranteed that no race conditions will occur.

The additional argument feature is implemented in SkelCL using
the variadic template feature from C++.

lambda captures : In C++, lambda expressions can make use of
variables which have been accessible at the time the lambda expres-
sion is created. The user has to explicitly indicate how these variable
are captured, i. e., how they will be accessed once the lambda is exe-
cuted. A variable can either be captured by-value or by-reference. If a
variable is captured by-value, a copy of the variable is made at the
time the lambda expression is created and accessed later when the
lambda expression is executed. If a variable is captured by-reference,
the original variable is accessed when the lambda expression is exe-
cuted through a reference. Capturing a variable by reference allows
the user to change the content of the variable from inside the lambda
expression, furthermore, in a parallel setting the user has to ensure
that the lifetime of the variable exceeds the time when the lambda
expression is executed.

In SkelCL, the customizing function can be expressed as a lambda
expression capturing variables. The by-value capturing of variables
is fully supported by the skelclc compiler and the capturing by-
reference is supported with the following restrictions: by-reference
capturing is only allowed if the reference is used to read from the
variable only, and writing to the captured variable is forbidden. The
reason for these restrictions is that when executing the lambda expres-
sion on the GPU, a write to a by-reference captured variable requires a
costly data transfer to ensure that the variable stored in CPU memory

56 high-level programming for multi-gpu systems

1 float a = initScalar();
2

3 /* create skeleton Y <- a * X + Y */
4 auto saxpy = skelcl::zip(
5 [a](float x, float y) { return a*x+y; });
6

7 Vector<float> X(SIZE); initVector(X);
8 Vector<float> Y(SIZE); initVector(Y);
9

10 Y = saxpy(X, Y); /* execute skeleton */

Listing 3.9: The BLAS saxpy computation using a zip skeleton customized
with a lambda expression capturing the variable a.

is modified. Furthermore, as the lambda expression will be executed
multiple times in parallel as part of the skeletons execution, it is likely
that race conditions occur when writing to the captured reference. We
can rewrite the saxpy example using a lambda expression capturing
the variable a as shown in Listing 3.9.

The variable a is now captured by the lambda expression in line 5.
Note that a is no longer passed as an argument when executing the
skeleton in line 10.

Additional arguments and lambda captures are related techniques
which both can be used to make additional data available inside of
the user function. There is one main technical differences between
both: for using lambda captures the variable to be captured has to be
declared and available when declaring the user function (in line 5 in
Listing 3.9) which is not the case for the additional argument feature
where the variable has to available when executing the skeleton (in
line 10 in Listing 3.8). By supporting the capturing feature of lambda
expressions SkelCL source code becomes more C++ idiomatic, but
ultimately the user has the choice of using either feature as it fits his
or her needs and personal taste.

3.3.3 Skeleton Execution on OpenCL Devices

The process of executing a skeleton on an OpenCL device, e. g., a GPU,
follows always the same steps independently of the skeleton involved.
This process is described in this subsection, before we will look at the
individual skeleton implementations in the next subsection.

The skelclc compiler transforms the SkelCL application code so
that the source code of the customizing function of a skeleton is avail-
able to the SkelCL library implementation as a string. When a skele-
ton instance is created, the SkelCL library implementation performs
the following steps to create an OpenCL kernel: 1) the source code

3.3 the skelcl library 57

1 float a = initScalar();
2 /* create skeleton Y <- a * X + Y */
3 auto saxpy = skelcl::Zip<Vector<float>(Vector<float>,
4 Vector<float>,
5 float)>(
6 skelcl::Source("float func(float x, float y, float a)"
7 " { return a*x+y; }"), "func");
8 /* create input vectors */
9 Vector<float> X(SIZE); initVector(X);

10 Vector<float> Y(SIZE); initVector(Y);
11 Y = saxpy(X, Y, a); /* execute skeleton */

Listing 3.10: Source code for the saxpy application emitted by the skelclc
compiler.

of the customizing function is merged with the OpenCL kernel im-
plementation of the skeleton; 2) the merged source code is adapted
into the final OpenCL kernel. This is done to support additional ar-
guments and so that names and types of the customizing function
and skeleton implementation match; 3) the created OpenCL kernel is
stored to a file to avoid performing steps 1) and 2) multiple times for
the same kernel.

On execution of the skeleton, the following steps are performed to
execute the computation on an OpenCL device: 1) the data of the in-
put containers is uploaded to the OpenCL device, if it is not already
there; 2) the OpenCL kernel arguments are set, including the addi-
tional arguments; 3) the OpenCL kernel is executed.

In the next two paragraphs, we will describe these two processes
and their individual steps.

creating an opencl kernel We will use the saxpy example
from the previous section as a running example to explain how an
OpenCL kernel is created. Listing 3.10 shows the code for the saxpy
application emitted by the skelclc compiler after receiving the code
shown in Listing 3.8 as input.

To create the corresponding OpenCL kernel, the source code of the
customizing function in line 6 and line 7 is combined with the pro-
totype implementation of the zip skeleton which is shown in List-
ing 3.11. The prototype implementation created the OpenCL kernel
ZIP receiving three pointers to global memory and one integer as ar-
guments. A boundary check is performed in line 8 before a function
with the name USER_FUNC is called (line 9) with a pair of elements read
from the two input arrays left and right. The result of the function
call is stored in the output array out.

The combined source codes clearly do not yet form a valid OpenCL
kernel as there exists no function called USER_FUNC. This prototype im-

58 high-level programming for multi-gpu systems

1 typedef int T0; typedef int T1; typedef int T2;
2

3 kernel void ZIP(const global T0* left,
4 const global T1* right,
5 global T2* out,
6 const unsigned int size) {
7 unsigned int id = get_global_id(0);
8 if (id < size) {
9 out[id] = USER_FUNC(left[id], right[id]); } }

Listing 3.11: Prototype implementation of the zip skeleton in OpenCL.

1 float USER_FUNC(float x, float y, float a) { return a*x+y; }
2 typedef float T0; typedef float T1; typedef float T2;
3

4 kernel void ZIP(const global T0* left,
5 const global T1* right,
6 global T2* out,
7 const unsigned int size, float a) {
8 unsigned int id = get_global_id(0);
9 if (id < size) {

10 out[id] = USER_FUNC(left[id], right[id], a); } }

Listing 3.12: OpenCL implementation of the zip skeleton customized for
performing the saxpy computation.

plementation has to be adapted to become a valid OpenCL kernel. To
make this adaption, the SkelCL library implementation makes use of
the same LLVM and Clang infrastructure used to build the skelclc
compiler. Three steps are performed to create a valid OpenCL kernel:
1) the customizing function is renamed into USER_FUNC; 2) the types
of the customizing functions are used to change the typedefs in line 1

so that the types of the kernel function ZIP match; 3) the additional
arguments of the customizing function are appended to the param-
eter list of the kernel function ZIP and the call to the customizing
function is adapted to forward the arguments.

After these steps the source code has been transformed into a valid
OpenCL kernel as shown in Listing 3.12.

Performing the adaption of the source code involves parsing the
code and building an abstract syntax tree for it by the Clang compiler
library. Performing this every time a skeleton is created is wasteful as
this task can take up to several hundreds of milliseconds, which can
be a considerable overhead for small kernels. Therefore, the SkelCL
library implements a caching of already transformed kernels to disk.

3.3 the skelcl library 59

If the same kernel is used again, the transformed code is loaded from
the cache.*

execute a skeleton on an opencl device On execution of
the skeleton, the created OpenCL kernel is executed on possibly mul-
tiple OpenCL devices. The data distribution of the input containers
determine which OpenCL devices are used for the execution. If the
copy, block, or overlap distribution is used, this means that all avail-
able devices are involved in the computation as defined by the distri-
butions. If the single distribution is used then just a single device is
used. If no distribution is set for the input containers, each skeleton
selects a default distribution.

The first step for the execution is to upload the data of the input
containers to the OpenCL devices. Before performing a data transfer,
the SkelCL implementation checks if the transfer is necessary or if
the data is already up to date on the receiving side. The details how
this is implemented in the memory management part of SkelCL are
described in Section 3.3.5.

Before enqueuing the OpenCL kernel in the OpenCL command
queue, its kernel arguments have to be set. First, the regular argu-
ments are set correspondingly to the order of arguments as defined
in the skeleton’s prototype implementation of the OpenCL kernel. Af-
terwards, the additional arguments are set.

Finally, the OpenCL kernel is enqueued with a global size corre-
sponding to the size of the input containers.

3.3.4 Algorithmic Skeleton Implementations

The SkelCL library implements each skeleton of the SkelCL program-
ming model using one or more OpenCL kernels. In this subsection,
we discuss the implementation of each skeleton targeting single- and
multi-device systems.

3.3.4.1 The Map Skeleton

The OpenCL kernel implementing the map skeleton is straightforward
and similar to the implementation of the zip skeleton shown in List-
ing 3.11. After a boundary check is performed, the customizing func-
tion is called with an item of the input container. The return value is
stored in the output container. On execution, the size of the input con-
tainer determines the number of work-items launched for executing
the kernel code. The same kernel code is used on single- and multi-
device systems. If the input container has no distribution declared for
it, the block distribution is used as default, ensuring that all devices
participate in the execution of the map skeleton.

* We observed that loading kernels from disk is in some cases at least five times faster
than creating them from the source.

60 high-level programming for multi-gpu systems

3.3.4.2 The Zip Skeleton

The OpenCL kernel of the zip skeleton was presented in the previous
section in Listing 3.11. For multi-device systems the block distribution
is used as default. The SkelCL library implementation enforces that
the distributions of the two input vectors are the same. If this is not
the case, the distribution of the second input is changed to meet this
requirement.

3.3.4.3 The Reduce Skeleton

The reduce skeleton is implemented as a parallel tree-based reduction.
Two OpenCL kernels are used for the implementation. The first ker-
nel implements a reduction where each work-group independently
reduces, depending on the input size, a large number of several hun-
dred thousand elements to a single element. This kernel is executed
by multiple work-groups in parallel to fully exploit the GPU. The
second kernel is only executed by a single work-group and contin-
ues the reduction of the intermediate results from the first kernel.
This two-kernel strategy is required for an efficient implementation
in OpenCL as no synchronization between work-items from different
work-groups is possible.

We will discuss different optimized implementations of the parallel
reduction in OpenCL in great detail in Chapter 5. The SkelCL imple-
mentation is based on the most optimized implementation discussed
there and shown in Listing 5.7 on page 128.

On a multi-device system, when using the block distribution, each
device performs a partial reduction of the data available in its mem-
ory. Then the intermediate results are transferred to the first device
which performs the final reduction. The output of the reduce skeleton
is a vector with a single element which is single distributed on the
first device.

3.3.4.4 The Scan Skeleton

The implementation of the scan skeleton follows the implementation
presented in [83]. This is a two-phase algorithm where each phase is
implemented as an OpenCL kernel.

The execution of the scan skeleton on multi-device systems is vi-
sualized in Figure 3.10. Here an example is shown where the prefix
sum is computed on a four-device system using the scan skeleton. The
input vector with the values [1, . . . , 16] is distributed using the block
distribution by default. This is shown in the top line. After perform-
ing the scan algorithm on all devices (second line of the figure), map
skeletons are built implicitly using the marked values and executed
on all devices except the first one. This produces the final result, as
shown in the bottom line.

The output vector is block-distributed among all GPUs.

3.3 the skelcl library 61

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 3 6 0 5 11 18 0 9 19 30 0 13 27 42

¬

0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120

Map:6 + 4
Map:18 + 8

Map:30 + 12­

First GPU Second GPU Third GPU Fourth GPU

Figure 3.10: Implementation of the scan skeleton visualized for four GPUs:
(1) All GPUs scan their parts independently. (2) map skeletons
are created automatically and executed to produce the result.

3.3.4.5 The Stencil Skeleton

In stencil applications, the same computation is performed for each
element of a container where the computation depends upon neigh-
boring values. In Section 3.2 we defined the stencil skeleton to sim-
plify the development of stencil applications. The SkelCL library pro-
vides two implementations of the stencil skeleton. The first one, called
MapOverlap, supports simple stencil computations; the second one,
called Stencil, provides support for more complex stencil compu-
tations possibly executed iteratively. In order to achieve high perfor-
mance, both implementations MapOverlap and Stencil use the GPU’s
fast local memory. Both implementations perform the same basic
steps on the GPU: first, the data is loaded from the global memory
into the local memory; then, the customizing function is called for
every data element by passing a pointer to the element’s location in
the local memory; finally, the result of the customizing function is
copied back into the global memory. Although both implementations
perform the same basic steps, different strategies are implemented for
loading the data from the global into the local memory.

In this subsection, we will start by discussing the MapOverlap im-
plementation and then discuss the Stencil implementation. Finally,
we will discuss the implementation of the stencil skeleton for multi-
device systems.

the mapoverlap implementation We will use the Gaussian
blur as an example application to discuss the MapOverlap implemen-
tation. The Gaussian blur is a standard image processing algorithm
used, among other things, for noise reduction. The color of every
pixel of an image is modified by computing a weighted average of
the neighboring pixel color values. The application will be discussed
in more detail in Section 4.5.1.

Listing 3.13 shows how the MapOverlap skeleton implementation is
used to express the Gaussian blur. The mapOverlap function in line 1

is customized with a lambda expression which uses its argument, a
Neighborhood object (line 2), to access the neighboring elements with

62 high-level programming for multi-gpu systems

1 auto gauss = mapOverlap(
2 [](Neighborhood<char>& in_img) {
3 char ul = in_img[{-1, -1}];
4 ...
5 char lr = in_img[{+1, +1}];
6 return computeGaussianBlur(ul, ..., lr); },
7 1, BorderHandling::NEUTRAL(0));

Listing 3.13: Implementation of Gaussian blur using the MapOverlap
implementaion of the stencil skeleton.

Figure 3.11: The MapOverlap implementation of the stencil skeleton prepares
a matrix by copying data on the top and bottom

relative indices (line 3 and line 5). The second and third argument of
the factory function define the range of the stencil shape and the bor-
der handling method (line 7). The actual computation of the Gaussian
blur is omitted from Listing 3.13 for brevity reasons.

Listing 3.14 shows a sketch of the OpenCL kernel created by the
MapOverlap implementation. To represent the Neighborhood object in
OpenCL, a C struct is created (line 2—line 3). A helper function
get (line 5—line 6) is created which handles the read access to the
data hold by the neighborhood object. The kernel function mapover-
lap, defined in line 14, first loads the data required by a work-group
into a local buffer stored in the fast local GPU memory (line 16). It
then prepares a neighborhood object and passes it to the customizing
function after a boundary check was performed. A barrier (line 19) en-
sures that the loading into the fast local memory has been completed
before any work-item executes the customizing function.

Loading of the data into the fast local memory is lengthy and in-
volves performing the boundary checks, therefore, it is not shown in
Listing 3.14. To minimize the overhead on the GPU, the MapOverlap
implementation prepares the input matrix on the CPU before upload-
ing it to the GPU: padding elements are appended; they are used
to avoid out-of-bounds memory accesses to the top and bottom of
the input matrix, as shown in Figure 3.11. This slightly enlarges the
input matrix, but it reduces branching on the GPU due to avoiding
some out-of-bound checks. In SkelCL a matrix is stored row-wise in
memory on the CPU and GPU, therefore, it would be complex and
costly to add padding elements on the left and right of the matrix. To
avoid out-of-bound accesses for these regions, the boundary checks
are performed on the GPU.

3.3 the skelcl library 63

1 #define RANGE (1) #define NEUTRAL (0)
2 struct {
3 local char* data; int row; int col; } char_neighborhood_t;
4

5 char get(char_neighborhood_t* m, int x, int y) {
6 return m->data[/*computed from RANGE, row, col, x, y*/]; }
7

8 char USER_FUNC(char_neighborhood_t* in_img) {
9 char ul = get(in_img, -1, -1);

10 ...
11 char lr = get(in_img, +1, +1);
12 return computeGaussianBlur(ul, ..., lr); }
13

14 kernel void mapoverlap(global char* in, global char* out,
15 local char* buffer, int numCols, int numRows) {
16 ... // load part of in into local buffer
17 char_neighborhood_t M; M.data = buffer;
18 M.row = get_local_id(1); M.col = get_local_id(0);
19 barrier(CLK_LOCAL_MEM_FENCE);
20 if (/* not out of bound */)
21 out[index] = USER_FUNC(&M); }

Listing 3.14: OpenCL kernel created by the MapOverlap implementation for
the Gaussian blur application.

the stencil implementation We use an iterative stencil ap-
plication simulating heat flow to discuss the Stencil implementation.
The application simulates heat spreading from one location and flow-
ing throughout a two-dimensional simulation space. Let us assume
that the heat flows from left to right as indicated by the arrows in
Figure 3.12. The heat value of a cell is updated based on its (left)
neighboring cells. Multiple iteration steps are required to simulate
the flow of heat over a longer distance.

Listing 3.15 shows the implementation of an iterative stencil ap-
plication simulating heat transfer in SkelCL. The application devel-
oper specifies the customizing function (line 2—line 6), as well as the
extents of the stencil shape (line 7) and the out-of-bound handling
(line 8). The Stencil implementation allows the stencil shape’s ex-
tents to be specified using four values for each of the directions: up,
right, down, and left. In the example in Listing 3.15, the heat flows
from left to right, therefore, no accesses to the elements to the right
are necessary and the stencil space’s extents are specified accordingly
(note the 0 in line 7 representing the extent to the right). Figure 3.12

illustrates this situation: the dark gray element is updated by using
the values from the left. The specified stencil shape’s extent is high-
lighted in light gray. In our current implementation, the user has to

64 high-level programming for multi-gpu systems

Figure 3.12: Stencil shape for
heat simulation

1 auto heatSim = skelcl::stencil(
2 [](Neighborhood<char>& in) {
3 char lt = in[{-1, -1}];
4 char lm = in[{-1, 0}];
5 char lb = in[{-1, +1}];
6 return computeHeat(lt,lm,lb);},
7 StencilShape(1, 0, 1, 1),
8 BorderHandling::NEUTRAL(255));
9 heatSim(100_iterations,

10 simulationSpace);

Listing 3.15: Heat simulation with the
stencil skeleton

explicitly specify the stencil shape’s extents, which is necessary for
performing the out-of-bound handling on the GPU. In future work,
the stencil shape could be inferred from the customizing function us-
ing source code analysis in many common cases. This would help to
avoid inconsistencies and free the user from specifying this informa-
tion explicitly.

Stencil applications often perform stencil computations iteratively,
like the heat transfer example which performs multiple iteration steps
in order to simulate the transfer of heat over time. The Stencil imple-
mentation supports iterative execution, which is especially challeng-
ing to implement on multi-device systems as we will see later. On
execution of the skeleton, the number of iterations to be performed
is specified by the user as the first argument (line 9). This could be
extended in the future, so that the user specifies a function to check
if a application specific condition is met and stop the iteration.

The OpenCL kernel created by the Stencil implementation looks
similar to the MapOverlap implementation presented in Listing 3.14.
The Stencil implementation uses a slightly different strategy than
the MapOverlap implementation in order to enable the usage of differ-
ent out-of-bound modes and stencil shapes when using several stencil
skeletons in a sequence, which we discuss in the next paragraph. To
understand why the strategy used by the MapOverlap implementa-
tion is not sufficient for stencil sequences let us consider a situation
where two stencil computations are performed one after another and
the two stencil shapes used are different. This cannot be implemented
efficiently using MapOverlap’s implementation strategy, as the input
matrix is extended on the CPU as specified by the first stencil shape.
Therefore, data would have to be downloaded to the CPU between ex-
ecutions and the data layout would have to be changed. To avoid this
problem, the Stencil implementation does not append padding ele-
ments on the CPU, but rather manages all out-of-bounds accesses on

3.3 the skelcl library 65

1 auto gauss = stencil(...);
2 auto sobel = stencil(...);
3 auto nms = stencil(...);
4 auto threshold = stencil(...);
5

6 StencilSequence<Pixel(Pixel)>
7 canny(gauss, sobel, nms, threshold);

Listing 3.16: Structure of the Canny algorithm implemented by a sequence
of skeletons.

the GPU, which slightly increases branching in the code, but enables
a more flexible usage of the skeleton.

sequence of stencil operations Many real-world applica-
tions perform different stencil operations in sequence, like the popu-
lar Canny algorithm [120] used for detecting edges in images. For the
sake of simplicity, we consider a version which applies the following
steps: 1) a noise reduction operation is applied, e. g., a Gaussian blur;
2) an edge detection operator like the Sobel filter is applied; 3) the
so-called non-maximum suppression is performed, where all pixels
in the image are colored black except pixels being a local maximum;
4) a threshold operation is applied to produce the final result. A more
complex version of the algorithm performs the edge tracking by hys-
teresis as an additional step.

Using the SkelCL library, each single step of the Canny algorithm
can be expressed using the stencil skeleton, as shown in Listing 3.16.
The threshold operation performed as the last step, does not need ac-
cess to, neighboring elements, because the user function only checks
the value of a single pixel. The Stencil implementation automatically
uses the implementation of the simpler (and thus faster) map skeleton
when the user specifies a stencil shape whose extents are 0 in all di-
rections. The single steps are combined into a single object of type
StencilSequence which can be executed like a stencil skeleton. On
execution, it passes its input data to the first stencil defined in the
sequence, which passes its output to the next stencil, and so forth.

targeting multi-gpu systems The implicit and automatic sup-
port of systems with multiple OpenCL devices is one of the key fea-
tures of SkelCL. By using distributions, SkelCL completely liberates
the user from error-prone and low-level explicit programming of data
(re)distributions on multiple GPUs.

The MapOverlap implementation uses the overlap distribution with
border regions in which the elements calculated by a neighboring de-
vice are located. When it comes to iteratively executing a skeleton,
data has to be transferred among devices between iteration steps,

66 high-level programming for multi-gpu systems

Host

Device 0

Device 1

Device 2

Device 0

Device 1

Device 2

Figure 3.13: Device synchronization for three devices. Equally patterned
and colored chunks represent the border regions and their
matching inner border region. After the download of the ap-
propriate inner border regions, they are swapped pair-wise on
the host. Then the inner border regions are uploaded in order
to replace the outdated border regions.

in order to ensure that data for the next iteration step is up-to-date.
As the MapOverlap implementation does not explicitly supports itera-
tions, its implementation is not able to exchange data between devices
besides a full down- and upload of the matrix.

The Stencil implementation explicitly supports iterative execution
and, therefore, only exchanges elements from the border region and
does not perform a full down- and upload of the matrix, as the
MapOverlap implementation does. Figure 3.13 shows the device syn-
chronizations, i. e., the data exchange performed between two itera-
tions by the Stencil implementation. Only the appropriate elements
in the inner border region, i. e., the border regions adjacent to two
OpenCL devices, are downloaded and stored as std::vectors in a
std::vector. Within the outer vector, the inner vectors are swapped
pair-wise on the host, so that the inner border regions can be up-
loaded in order to replace the out-of-date border regions.

By enlarging the number of elements in the border regions, multi-
ple iteration steps can be performed on each device before exchang-
ing data. However, this introduces redundant computations, such that
a trade-off between data exchange and redundant computations has
to be found. For the Stencil implementation, the user can specify
the number of iterations between device synchronizations. In [23] the
effects of exploring this parameter space is discussed. For the inves-
tigated applications, the effect of choosing different numbers of itera-
tions between device synchronization was not very large.

3.3 the skelcl library 67

1 auto mm = allpairs([](const Vector<float>& a,
2 const Vector<float>& b) {
3 float c = 0.0f;
4 for (int i = 0; i < a.size(); ++i)
5 c += a[i] * b[i];
6 return c; });

Listing 3.17: Matrix multiplication expressed using the generic allpairs
skeleton.

3.3.4.6 The allpairs Skeleton

The allpairs skeleton defined in Section 3.2 applies a customizing func-
tion to all pairs of vectors from two matrices. There exist two ver-
sion of the skeleton: the generic allpairs skeleton introduced in Sec-
tion 3.2.4.3 and the specialized allpairs skeleton introduced in Sec-
tion 3.2.4.4. In the specialized version the customizing function is ex-
pressed as a composition of the zip and reduce skeleton.

In this subsection, we will first discuss the generic and then the spe-
cialized implementation. We will also estimate the performance bene-
fit gained by the specialized implementation. Finally, we will discuss
the implementation of the allpairs skeleton on multi-device systems.

the generic allpairs skeleton Listing 3.17 shows the pro-
gram for computing matrix multiplication using the generic allpairs
skeleton. The implementation of the customizing function is straight-
forward. It is expressed as a lambda expression that receives a pair of
vectors, multiplies their elements and sums them up.

Listing 3.18 shows the OpenCL kernel created after adding and
adapting the generic allpairs implementation. The customizing func-
tion (line 4—line 9) has been transformed by the skelclc compiler.
The vector class has been replaced by an OpenCL representation (de-
fined in line 1 and line 2) and the element access to the vectors has
been replaced by computations of the matching indices. This imple-
mentation assumes that the rows of the first matrix are combined
with the columns of the second matrix, as it is required for the matrix
multiplication.

The allpairs kernel function prepares instances of the struct re-
placing the vector class in line 16 and line 17. After performing a
boundary check, the customizing function is called in line 19. This
OpenCL kernel is executed once for every element of the output ma-
trix C.

This generic implementation makes no assumption about the or-
der in which the customizing function (USER_FUNC) accesses the ele-
ments of its two input vectors. In this generic case, we cannot assume
that the two vectors fit entirely into the fast but restricted GPU local

68 high-level programming for multi-gpu systems

1 struct {
2 global float* data; int size; int index; } float_matrix_t;
3

4 float USER_FUNC(float_matrix_t* a, float_matrix_t* b) {
5 float c = 0.0f;
6 for (int i = 0; i < a->size; ++i) {
7 c += a->data[a->index * a->size + i]
8 * b->data[i * b->size + b->index]; }
9 return c; }

10

11 kernel void allpairs(const global float* Ap,
12 const global float* Bp,
13 global float* Cp,
14 int n, int d, int m) {
15 int col = get_global_id(0); int row = get_global_id(1);
16 float_matrix_t A; A.data = Ap; Am.size = d; A.index = row;
17 float_matrix_t B; B.data = Bp; Bm.size = m; B.index = col;
18 if (row < n && col < m)
19 Cp[row * m + col] = USER_FUNC(&A, &B); }

Listing 3.18: OpenCL kernel used in the implementation of the generic
allpairs skeleton.

memory. Therefore, we have to use only the slower global memory in
the generic implementation. On modern GPUs, accesses to the global
memory are very expensive, taking up to 800 processor cycles, as com-
pared to only few cycles required to access the local memory [44].

Let us assume targeting GPU architectures and estimate the num-
ber of global (and, therefore, expensive) memory accesses required
for computing an element of the matrix multiplication in the generic
case. One global memory read access for every element of both in-
put vectors is performed, and a single global memory write access is
required to write the result into the output matrix. Therefore,

n ·m · (d+ d+ 1) (3.6)

global memory accesses are performed in total, where n and m are
the height and width of matrix C and d is the width of A and the
height of B. By using the fast but small local memory, this number
of global memory accesses can be reduced and, thus, performance
can be improved, as we will see in the next paragraph. Using the
local memory for matrix multiplication is a well-known optimization
which we systematically apply to a generic skeleton, rather than to a
particular application as usually done in the literature.

3.3 the skelcl library 69

1 auto mult = zip([](float x, float y){return x*y;});
2 auto sumUp = reduce([](float x, float y){return x+y;}, 0);
3 auto mm = allpairs(sumUp, mult);

Listing 3.19: Matrix multiplication expressed using the specialized allpairs
skeleton.

the specialized allpairs skeleton Listing 3.19 shows ma-
trix multiplication expressed using the specialized allpairs skeleton.
By expressing the customizing function of the allpairs skeleton as a
zip-reduce composition, we provide to the skeleton implementation
additional semantic information about the memory access pattern
of the customizing function, thus allowing for improving the perfor-
mance. Our idea of optimization is based on the OpenCL program-
ming model that organizes work-items in work-groups which share the
same GPU local memory. By loading data needed by multiple work-
items of the same work-group into the local memory, we can avoid
repetitive accesses to the global memory.

For the allpairs skeleton with the zip-reduce customizing function,
we can adopt the implementation schema for GPUs from [136], as
shown in Figure 3.14. We allocate two arrays in the local memory, one
of size r× k (r = 2, k = 3 in Figure 3.14) for elements of A and one
of size k× c (c = 3 in Figure 3.14) for elements of B. A work-group
consisting of c× rwork-items computes s blocks (s = 2 in Figure 3.14)
of the result matrix C. In Figure 3.14, the two blocks marked as 7

and 8 are computed by the same work-group as follows. In the first
iteration, the elements of blocks 1 and 2 are loaded into the local
memory and combined following the zip-reduce pattern. The obtained
intermediate result is stored in block 7 . Then, the elements of block
3 are loaded and combined with the elements from 2 which still re-

side in the local memory. The intermediate result is stored in block 8 .
In the second iteration, the algorithm continues in the same manner
with blocks 4 , 5 , and 6 , but this time, the elements of the blocks

A

1 4

3 6

k

r
r · s

d

B

2

5

c

k

d

C

7

8
n

m

Figure 3.14: Implementation schema of the specialized allpairs skeleton.

70 high-level programming for multi-gpu systems

are also combined with the intermediate results of the first iteration,
which are stored in blocks 7 and 8 . The advantage of computing
multiple blocks by the same work-group is that we keep the elements
of B in the local memory when computing the intermediate results,
i. e., we do not reload block 2 twice for the computation of blocks 7

and 8 .
Every element loaded from the global memory is used by multiple

work-items: e. g., the upper left element of block 1 is loaded only
once from the global memory, but used three times: in the computa-
tion of the upper left, upper middle, and upper right elements of 7 .
In general, every element loaded from A is reused c times, and every
element from B is reused r · s times. As the intermediate results are
stored in the global memory of matrix C, we perform two additional
memory accesses (read/write) for every iteration, i. e., 2 · dk in total.
Therefore, instead of n ·m · (d + d + 1) (see Equation (3.6)) global
memory accesses necessary when using the non-specialized skeleton
only

n ·m · (d
r · s +

d

c
+ 2 · d

k
) (3.7)

global memory accesses are performed. By increasing the parameters
s and k, or the number of work-items in a work-group (c and r),
more global memory accesses can be saved. However, the work-group
size is limited by the GPU hardware. While the parameters can be
chosen independently of the matrix sizes, we have to consider the
amount of available local memory. [68] and [136] discuss how suitable
parameters can be found by performing runtime experiments. In [68]
the parameters c = 32, r = 8, s = 32, and k = 64 are used on modern
GPU hardware showing good performance.

We will report measurements of the performance difference for the
two skeleton implementations on real hardware in Chapter 4.

the allpairs skeleton using multiple gpus The allpairs
skeleton can be efficiently implemented not only on systems with

A

B

C

GPU 1

GPU 2

Figure 3.15: Data distributions used for a system with two GPUs: matrices
A and C are block distributed, matrix B is copy distributed.

3.3 the skelcl library 71

a single GPU, but on multi-GPU systems as well. The necessary data
distribution can be easily expressed using two of SkelCL’s distribu-
tions, as shown in Figure 3.15: Matrix B is copy distributed, i. e., it is
copied entirely to all GPUs in the system. Matrix A and C are block dis-
tributed, i. e., they are row-divided into as many equally-sized blocks
as GPUs are available; each block is copied to its corresponding GPU.
Following these distributions, each GPU computes one block of the re-
sult matrix C. In the example with two GPUs shown in Figure 3.15, the
first two rows of C are computed by GPU 1 and the last two rows by
GPU 2. The allpairs skeleton automatically selects these distributions,
therefore, the same source code can be used when using a single GPU
or multiple GPUs.

3.3.5 Memory Management Implementation

In the SkelCL programming model, the user manages memory us-
ing container data types. In the SkelCL library, the two container data
types – vector and matrix – are implemented as template classes. This
generic implementation allows for storing data items of any primitive
C/C++ data type (e. g., int), as well as user-defined data structures
(structs). The implementations follow the resource acquisition is ini-
tialization (RAII) idiom, which means that they automatically allocate
needed resources and free them automatically when the lifetime of
the container ends.

the skelcl vector The SkelCL vector replicates the interface of
the vector from the C++ Standard Template Library (STL), i. e., it can
be used as a drop-in replacement of the standard vector. Internally, a
vector comprises pointers to the corresponding areas of main mem-
ory (accessible by the host) and device memory. The vector holds
one pointer for the host and one pointer for each device available.
Memory on the devices is allocated automatically, according to the
distribution of the vector: while for a single distributed vector only
memory on a single device is allocated, for a vector distributed with
the copy, block, or overlap distribution memory on all devices is al-
located. The selected distribution obviously also influences how big
the buffers allocated on the devices will be.

Before the execution of a skeleton, the input vector’s implementa-
tion ensures that all of its data is available on the devices. This might
result in implicit data transfers from the host memory to device mem-
ory. The data of the output vector is not copied back to the host mem-
ory but rather resides in the device memory. Before every data trans-
fer, the vector implementation checks whether the data transfer is nec-
essary; only then the data is actually transferred. Hence, if an output
vector is used as the input to another skeleton, no further data trans-
fer is performed. This lazy copying in SkelCL defers data transfers as

72 high-level programming for multi-gpu systems

long as possible or avoids them completely and, thus, minimizes the
costly data transfers between host and device. While all data transfers
are performed implicitly by SkelCL, we understand that experienced
application developers may want to have a fine-grained control over
the data transfers between host and devices. For that purpose, SkelCL
offers a set of APIs which developers can use to explicitly initiate and
control the data transfer to and from the devices.

the skelcl matrix The SkelCL matrix offers an easy to use in-
terface similar to the interface of the vector. Data is stored in the row-
major order and iterators are provided to iterate first over rows and
then inside of a single row to access a particular element. For the copy,
block, and overlap distributions, the matrix is divided across rows. A
single row is never split across multiple devices, which simplifies
the memory management. Besides offering an interface to access el-
ements on the host, the matrix also offers an interface for accessing
elements on the device by using two-dimensional indices. This frees
the application developer from performing cumbersome index calcu-
lations manually.

3.3.6 Data Distribution Implementation

The data distributions determine how the data of a container is dis-
tributed across multiple devices. In the SkelCL library implementa-
tion, there exists a class for each data distribution encapsulating the
behavior of the distribution. Every container stores its current data
distribution as a member variable. When the data of the container
has to be transferred to or from the devices, the data distribution
object is invoked to perform the data transfer operation.

3.4 conclusion

In this chapter we introduced the SkelCL programming model and
its implementation as a C++ library. We started the chapter with a
case study showing the drawbacks of the low-level OpenCL program-
ming approach. Then, we introduced the SkelCL programming model
with its three high-level features: 1) container data types which sim-
plify the memory management as data is automatically allocated and
transfered to and from GPUs; 2) algorithmic skeletons which capture
common programming patterns and hide the complexities of parallel
programming from the user; and 3) data distributions which allow
the user to specify how data should be distributed across GPUs and,
thus, simplifies the programming of multi-GPU systems.

In this chapter we also introduced two novel algorithmic skeletons
targeted towards stencil and allpairs computations. For both skele-
tons we provided a formal definition, as well as implementations for

3.4 conclusion 73

single- and multi-GPU systems. For the allpairs skeleton we identified
a specialization rule, which enables an optimized implementation on
GPUs as it reduces the amount of global memory accesses.

The SkelCL programming model and library address the pro-
grammability challenge. In the next chapter we will evaluate the
raised level of programmability and the performance of SkelCL by
implementing a set of benchmark applications and performing run-
time experiments with them.

4A P P L I C AT I O N S T U D I E S

In this chapter we present various application studies evaluat-
ing the usefulness and performance of the abstractions intro-
duced by the SkelCL programming model which were presented

in the previous chapter. We start with a brief discussion of the met-
rics used to evaluate the SkelCL programming model and discuss the
experimental setup used throughout the chapter. We will then look
at applications from a wide range of domains ranging from simple
benchmark applications like the computation of the Mandelbrot set,
over linear algebra and image processing applications, to real-world
applications in medical imaging, and physics.

For all source codes we only show the relevant code sections and
omit implementation details like initializing SkelCL.

4.1 experimental setup

This section briefly discusses the evaluation metrics used in this chap-
ter which were chosen to measure the quality of the abstractions intro-
duced in the SkelCL programming model and their implementation
in the SkelCL library. We will also discuss the hardware used in the
experiments.

4.1.1 Evaluation Metrics

We want to evaluate programmability, i. e., the ease of programming,
and the performance of the SkelCL programming model and library.

Measuring programmability is difficult. Various studies [87, 88]
have been conducted and metrics [153] have been proposed to mea-
sure how convenient a certain style of programming or a certain pro-
gramming model is. None of these metrics is widely established in
the scientific or industrial communities. We chose to use one of the
simples metrics possible to quantify programming effort: counting
the Lines Of source Code (LOC). The author wants to emphasize that
this metric is not always a good representation of programmability. A
shorter program does not necessarily mean that the development of
the program has been more convenient. We will, therefore, alongside
presenting the lines of code argue why SkelCL simplifies the program-
ming of parallel devices, like GPUs, as compared to the state-of-the-
art approach OpenCL.

75

76 application studies

As the metric for performance we use absolute and relative run-
time. We only make comparisons using software executed on the
same hardware. We perform comparisons using published applica-
tion and benchmark software from researchers or officially provided
by Nvidia or AMD. In addition, we compare self developed and opti-
mized OpenCL code versus code written using the SkelCL library.

For all measurements we performed 100 runs and report the me-
dian runtime.

4.1.2 Hardware Setup

For performing our runtime experiments we used a PC equipped
with a quad-core CPU (Intel Xeon E5520, 2.26 GHz) and 12 GB of main
memory. The system is connected to a Nvidia Tesla S1070 computing
system consisting of four Nvidia Tesla GPUs. The S1070 has 16 GB
of dedicated memory (4 GB per GPU) which is accessed with up to
408 GB/s (102 GB/s per GPU). Each GPU comprises 240 streaming
processor cores running at up to 1.44 GHz. The Linux based Ubuntu
operating system was used. The runtime experiments where con-
ducted at different times from 2010 until 2015. We used the follow-
ing GPU driver versions and versions of the CUDA toolkit: 258.19 and
CUDA toolkit 3.2 for the Mandelbrot set computation and the medi-
cal imaging application, 304.54 and CUDA toolkit 5.0 for the Matrix
Multiplication application, 319.37 and CUDA toolkit 5.5 for the image
processing applications, and, finally, 331.62 and CUDA toolkit 6.0 for
the linear algebra applications and the physics simulation.

This hardware setup represents a common heterogeneous system
comprising four CPU cores and 960 GPU streaming processor cores
with a total of 28 GB of memory. Overall this system has a theoretical
single-precision floating point performance of 4219.52 GFLOPS (4 ×
1036.8 GFLOPS for the GPUs and 72.32 GFLOPS for the CPU).

4.2 computation of the mandelbrot set

The Mandelbrot [111] set includes all complex numbers c ∈ C for
which the sequence

zi+1 = z
2
i + c, i ∈N (4.1)

starting with z0 = 0 does not escape to infinity. When drawn as an
image with each pixel representing a complex number, the boundary
of the Mandelbrot set forms a fractal. Figure 4.1 shows an image visu-
alizing part of the Mandelbrot set. The software producing the image
was implemented using the SkelCL library. The calculation of such an
image is a time-consuming task, because the sequence given by Equa-
tion (4.1) has to be calculated for every pixel. If this sequence does not

4.2 computation of the mandelbrot set 77

Figure 4.1: Visualization of a part of the Mandelbrot set. The image was
produced using the SkelCL library.

cross a given threshold for a given number of iteration steps, it is pre-
sumed that the sequence will converge. The respective pixel is thus
taken as a member of the Mandelbrot set, and it is displayed black.
Other pixels outside are assigned a color that corresponds to the num-
ber of iterations of the sequence given by Equation (4.1). Computing
a Mandelbrot fractal is easily parallelizable, as all pixels of the fractal
can be computed simultaneously.

SkelCL Implementation

The Mandelbrot set computation expressed in the SkelCL program-
ming model uses the map skeleton as shown in Equation (4.2).

mandelbrot w h =

map computeColorOfPixel (generateIndex w h) (4.2)

Here a function mandelbrot is defined taking two arguments – the
width w and height h of the image to compute. The function is de-
fined in terms of the map skeleton which is customized with the
computeColorOfPixel function computing the color of a single pixel
of the image following Equation (4.1) (not shown here) and operating
on an input matrix of size w × h consisting of indices. This input
matrix is generated by the generateIndex function which – given a
width w and height h – produces a matrix containing all combina-
tions of index-pairs (x,y) with x < w and y < h.

The implementation of the Mandelbrot set computation using the
SkelCL library is shown in Listing 4.1. A user-defined data type is
introduced to represent the color of a pixel (line 1). An instance of
the map skeleton is created in line 6 and applied to IndexMatrix
(line 7). The IndexMatrix represents all indices up to a given width

78 application studies

1 typedef struct { char r; char g; char b; } Pixel;
2

3 Pixel computeColorOfPixel(IndexPoint) { ... };
4

5 void mandelbrot(const int width, const int height) {
6 auto m = map(computeColorOfPixel);
7 auto image = m(IndexMatrix{w, h});
8 writeToDisk(image); }

Listing 4.1: Implementation of the Mandelbrot set computation in SkelCL

and height. It is implemented as a special representation of the more
generic Matrix class avoiding the explicit storing of the indices in
memory. Instead when accessing an element the index value is com-
puted on the fly. This implementation avoids allocation of memory
for storing the indices and transferring them to the GPU.

We created a similar parallel implementation for computing a Man-
delbrot fractal using OpenCL. We compare the programming effort
and performance for this implementation against our SkelCL-based
implementation.

Programming effort

SkelCL require a single line of code for initialization in the host code,
whereas OpenCL requires a lengthy initialization of different data
structures which takes about 20 lines of code.

The host code differs significantly between both implementations.
In OpenCL, several API functions are called to load and build the
kernel, pass arguments to it and to launch it using a specified work-
group size. In SkelCL, the map skeleton is used to compute the color
of all pixels in the image. An IndexMatrix representing complex num-
bers, each of which is processed to produce a pixel of the Mandelbrot
fractal, is passed to the map skeleton upon execution. Specifying the
work-group size is mandatory in OpenCL, whereas this is optional in
SkelCL.

program size The OpenCL-based implementation has 118 lines
of code (kernel: 28 lines, host program: 90 lines) and is thus more
than twice as long as the SkelCL versions with 57 lines (26, 31) (see
Figure 4.2).

kernel size The kernel function is similar in both implementa-
tions: it takes a pixel’s position (i. e., a complex number) as input, per-
forms the iterative calculation for this pixel, and returns the pixel’s
color. However, while the input positions are given explicitly when
using the map skeleton in SkelCL, no positions are passed to the ker-

4.3 linear algebra applications 79

0

30

60

90

120

OpenCL SkelCL

Li
ne

s
of

 C
od

e

CPU code GPU code

0

10

20

30

OpenCL SkelCL

R
un

tim
e

in
 S

ec
on

ds

Figure 4.2: Runtime and program size of the Mandelbrot application.

nel in the OpenCL-based implementation. The positions are implicitly
determined based on the work-item’s index.

Performance experiments

We tested our implementations on a single GPU of our test system to
compute a Mandelbrot fractal of size 4096×3072 pixels. In OpenCL,
work-groups of 16×16 are used; SkelCL uses its default work-group
size of 256 work-items.

The results are shown in Figure 4.2. As compared to the runtime
of the SkelCL-based implementation (26 seconds), the implementa-
tion based on OpenCL (25 seconds) is faster by 4%. Since SkelCL is
built on top of OpenCL, the performance difference of SkelCL and
OpenCL can be regarded as the overhead introduced by SkelCL. The
Mandelbrot application demonstrates that SkelCL introduces a tolera-
ble overhead of less than 5% as compared to OpenCL. A clear benefit
of this overhead is the reduced programming effort required by the
SkelCL program.

4.3 linear algebra applications

In this section we are going to evaluate SkelCL using two basic linear
algebra applications:

• the sum of absolute values of a vector and

• the dot product of two vectors.

Both applications are included in BLAS [55, 56], the well known li-
brary of basic linear algebra functions. The BLAS functions are used
as basic building blocks by many high-performance computing appli-
cations.

80 application studies

Here we want to investigate how easily these applications can be
expressed with skeletons in SkelCL. Furthermore, we are interested
in the runtime performance of the SkelCL implementations.

Sum of Absolute Values

Equation (4.3) shows the mathematical definition of the sum of abso-
lute values (short asum) for a vector ~x of length n with elements xi:

asum ~x =

n∑
i=0

|xi| (4.3)

For all elements of the vector the absolute values are added up to
produce the final scalar result.

SkelCL Implementation

In the SkelCL programming model we can express asum using the
map and reduce skeletons as follows:

asum ~x = reduce (+) 0
(
map (| . |) ~x

)
(4.4)

where: |a| =

{
a if a > 0

−a if a < 0

The map skeleton applies the (| . |) function to each element of the
input vector before the reduce skeleton is used to sum up the elements.

The implementation of asum using the SkelCL library is shown
in Listing 4.2. In line 3—line 6 the customized skeletons are defined.
The map skeleton in Equation (4.4) corresponds directly to line 3 and
line 4 in Listing 4.2 where the | . | function is represented using a C++
lambda expression. The line 5 and line 6 correspond directly to the
reduce skeleton in Equation (4.4). By applying the skeletons to the in-
put vector (line 7) the result is computed and accessed in line 7. In
the SkelCL library implementation the reduce skeleton returns a vec-
tor containing a single element, called result in this particular case.
The containers in the SkelCL library are implemented as futures [67,
85]. This allows the computation of all skeletons to be performed
asynchronously, i. e., when executing a skeleton the computation is
launched and the called function returns immediately. When access-
ing values of the returned container, e. g., via the array subscript oper-
ator as shown in line 7, the call will block until the accessed value has
been computed. Here we could have also used the equivalent front
member function for accessing the first element of the result vector.

4.3 linear algebra applications 81

1 float asum(const Vector<float>& x) {
2 skelcl::init();
3 auto absAll = map(
4 [](float a){ if (a >= 0) return a; else return -a; });
5 auto sumUp = reduce(
6 [](float a, float b){return a+b;}, 0);
7 auto result = sumUp(absAll(x)); return result[0]; }

Listing 4.2: Implementation of the asum application in SkelCL

1 float dotProduct(const Vector<float>& x,
const Vector<float>& y) {

2 skelcl::init();
3 auto mult = zip(
4 [](float x, float y){return x*y;});
5 auto sumUp = reduce(
6 [](float x, float y){return x+y;}, 0);
7 return sumUp(mult(x, y)).front(); }

Listing 4.3: Implementation of the dot product application in SkelCL

Dot Product

The computation of the dot product, a. k. a., scalar product, is a com-
mon mathematical operation performed on two input vectors ~x and
~y of identical length n as defined in Equation (4.5):

dotProduct ~x ~y =

n∑
i=0

xi × yi (4.5)

SkelCL Implementation

In the SkelCL programming model we can express dotProduct using
the zip and reduce skeletons as follows:

dotProduct ~x ~y = reduce (+) 0
(
zip (×) ~x ~y

)
(4.6)

The zip skeleton performs pairwise multiplication of the input vectors
before the reduce skeleton is used to sum up the intermediate results.

Listing 4.3 shows the implementation using the SkelCL library. The
structure of the implementation is very similar to the asum applica-
tion. Here we use the front member function to access the first (and
only) element of the computed result vector (line 7).

82 application studies

 asum dot product

0

30

60

90

120

CUBLAS OpenCL SkelCL CUBLAS OpenCL SkelCL
Li

ne
s

of
 C

od
e

CPU Code
GPU Code

Figure 4.3: Lines of code for both basic linear algebra applications

We now compare the SkelCL implementations shown in Listing 4.2
and Listing 4.3 against naïve OpenCL implementations and imple-
mentations using the CUBLAS library respectively.

Programming effort

Figure 4.3 shows the lines of code for the asum application on the
left and for the dot product application on the right. The CUBLAS im-
plementations requires 58 respectively 65 lines in total, whereby no
GPU code is written directly. The code contains a lengthy setup, mem-
ory allocations, memory transfers and launching the computation on
the GPU including all necessary error checks. The naïve OpenCL im-
plementations require over 90 lines each (asum: 91, dot product: 96)
for managing the GPU execution and 20 lines of GPU code. By far
the shortest implementations are the SkelCL implementations with
7 lines each, as shown in Listing 4.2 and Listing 4.3. Here we count
the lambda expressions customizing the algorithmic skeletons as GPU
code and all other lines as CPU code. The code is not just shorter but
each single line is clear and straightforward to understand, where,
e. g., the CUBLASAPI call for launching the dot product computation
alone expects 7 arguments requiring the programmer to look up the
documentation for using it correctly.

Performance experiments

Figure 4.4 shows the runtime for the asum application and the run-
time for the computation of the dot product. The figure uses a loga-
rithmic scale on the vertical axis and shows the runtime for different
sizes of the input vectors: from 4 megabyte to 512 megabyte. These
results include data transfers to and from the GPU as well as the com-
putation performed on the GPU.

4.3 linear algebra applications 83

 asum dot product

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

1

10

100

1000

 4
M

B
 8

M
B

 1
6M

B

 3
2M

B

 6
4M

B

12
8M

B

25
6M

B

51
2M

B

 4
M

B
 8

M
B

 1
6M

B

 3
2M

B

 6
4M

B

12
8M

B

25
6M

B

51
2M

B

Data Size

R
un

tim
e

in
 m

s
 (

lo
g

sc
al

e)
● CUBLAS OpenCL SkelCL

Figure 4.4: Runtime for both basic linear algebra applications

The results clearly show that the SkelCL version is the slowest, fol-
lowed by the naïve OpenCL implementation, and, finally, the imple-
mentation using CUBLAS which is the fastest. For both applications
the performance difference between the versions is roughly similar
independent of the input size. For asum SkelCL is between 2 and 3.2
times slower than the naïve OpenCL version and up to 7 times slower
than the CUBLAS version. For dot product SkelCL is on average about
2.25 times slower than the naïve OpenCL version and between 3.5 and
4 times slower than CUBLAS. We will discuss the reasons for the bad
performance of the SkelCL implementation in the next subsection.

The CUBLAS version is about 2 times faster than the naïve OpenCL
version for asum and 1.7 times for the dot product application. One
has to keep in mind, that these benchmark are mostly dominated
by the memory transfers moving data between CPU and GPU which
are the same in both version. This explains the rather small differ-
ence in runtime between the naïve OpenCL version and the optimized
CUBLAS version.

Discussion

As discussed in Chapter 3 the SkelCL library implementation gen-
erates one OpenCL kernel for each skeleton (and two for the reduce
skeleton). This procedure makes it difficult to fuse multiple skeleton
implementations into a single OpenCL kernel, which would be re-
quired to achieve a competitive performance for the asum and dot
product benchmark.

To validate this explanation and quantify the effect of launching
additional kernels where a single kernel would be sufficient we in-

84 application studies

 asum sum

● ● ● ● ● ● ● ●1

2

4

6

8

 4
M

B
 8

M
B

 1
6M

B

 3
2M

B

 6
4M

B

12
8M

B

25
6M

B

51
2M

B

 4
M

B
 8

M
B

 1
6M

B

 3
2M

B

 6
4M

B

12
8M

B

25
6M

B

51
2M

B

Data Size

R
el

at
iv

e
R

un
tim

e

● CUBLAS OpenCL SkelCL

Figure 4.5: Runtime of the naïve OpenCL and SkelCL versions of asum and
sum compared to CUBLAS.

vestigate the performance of SkelCL’s reduce skeleton on its own. This
is similar to the asum benchmark, but without applying the map skele-
ton for obtaining the absolute value of every element, i. e., we mea-
sure the sum benchmark:

sum ~x = reduce (+) 0 ~x (4.7)

For comparison we also modified the naïve OpenCL implementation
of asum to not apply the absolute value function to every element of
the input vector. Figure 4.5 shows the performance results of the naïve
OpenCL version and the SkelCL version for asum on the left and sum
on the right. The plots show the performance relative to the perfor-
mance of the CUBLAS implementation of asum. We can see, that the
performance difference for asum and sum it is very small (only up to
4%) for the naïve OpenCL version. This makes sense, as the most part
of the computation is spend for reducing the elements and not for ap-
plying a simple function to each element in parallel. For the SkelCL
implementations the difference between the two benchmarks is very
large. This is due to the fact that for asum a separate OpenCL kernel
is launched which reads each value from the global memory, applies
the absolute value function to it, and stores the result back to global
memory. The reduction kernel then starts by reading each element
back from global memory. This leads to a huge performance penalty,
where the asum benchmark is up to 6.2 times slower than the sum
benchmark. Furthermore, we can see that for the sum benchmark the
SkelCL implementation outperforms the naïve OpenCL implementa-

4.4 matrix multiplication 85

tion and is only between 16% and 37% slower than the CUBLAS asum
implementation.

In Chapter 5, we will discuss a novel compilation technique which
addresses this drawback of SkelCL. This technique supports the gen-
eration of a single efficient OpenCL kernel for applications like the
asum and dot product examples.

4.4 matrix multiplication

The multiplication of matrices is a fundamental building block for
many scientific applications. A n× d matrix A is multiplied with a
d×m matrix B to produce a n×m matrix C, where the elements of
C are computed as:

Cij =

d∑
k=0

Aik ×Bkj, ∀ i ∈ 1, . . . ,n∧ j ∈ 1, . . . ,m

Here Ai∗ refers to the ith row of A and B∗j to the jth column of B.
Figure 4.6 visualizes this computation. To compute the highlighted el-
ement in matrix C, the highlighted row of matrix A is combined with
the highlighted column of matrix B. For computing the entire matrix
C, all pairs of rows from A and columns of B have to be processed.
Therefore, in SkelCL the allpairs skeleton can be used to express ma-
trix multiplication.

SkelCL Implementation

Equation (4.8) shows how matrix multiplication can be expressed us-
ing the allpairs skeleton in the SkelCL programming model:

mm A B = allpairs f A BT (4.8)

where: f ~a ~b =

d∑
k=0

ak × bk

When looking back at Equation (4.5) in the previous section, we can
see, that f is actually the dot product computation, therefore, we can
write:

mm A B = allpairs dotProduct A BT (4.9)

We know that we can express the dot product as a sequential composi-
tion of the zip and reduce skeletons as we saw in the previous section.
In Chapter 3, Section 3.2.4, we discussed a specialized implementa-
tion of the allpairs skeleton for computations which can be expressed
in this way. Therefore, we can use the SkelCL library to develop two
implementations: 1) using the generic allpairs skeleton; and 2) using
the specialized allpairs skeleton.

86 application studies

A
d

B

d

C

n

m

Figure 4.6: Matrix multiplication A× B = C. The red highlighted element
in matrix C is computed by combining the highlighted row of
matrix A with the highlighted column of matrix B.

1 Matrix<float> mm(const Matrix<float>& A,
2 const Matrix<float>& B) {
3 skelcl::init();
4 auto mm = allpairs(
5 [](const Vector<float>& a, const Vector<float>& b) {
6 float c = 0.0f;
7 for (int i = 0; i < a.size(); ++i)
8 c += a[i] * b[i];
9 return c; });

10 return mm(A, B); }

Listing 4.4: Implementation of matrix multiplication using the generic
allpairs skeleton in SkelCL.

Listing 4.4 shows the implementation of matrix multiplication us-
ing the generic allpairs skeleton. The skeleton is customized with a
lambda expression processing two vectors: a is a row vector of ma-
trix A and b is a column vector of matrix B. In this generic imple-
mentation the dot product computation is implemented using a for
loop iterating over the vectors, multiplying elements pairwise and
summing them up in the accumulation variable c.

Listing 4.5 shows the implementation of matrix multiplication us-
ing the specialized allpairs skeleton. Here the allpairs skeleton is cus-
tomized with zip and reduce skeletons defined in line 4 and line 6.
This implementation corresponds more closely to Equation (4.9): as
we express the dot product using these two skeletons (as shown in
Equation (4.6)). Therefore, we reuse the definitions of mult and sumUp
as used in Listing 4.3.

4.4 matrix multiplication 87

1 Matrix<float> mm(const Matrix<float>& A,
2 const Matrix<float>& B) {
3 skelcl::init();
4 auto mult = zipVector(
5 [](float x, float y){return x*y;});
6 auto sumUp = reduce(
7 [](float x, float y){return x+y;}, 0);
8 auto mm = allpairs(sumUp, mult);
9 return mm(A, B); }

Listing 4.5: Implementation of matrix multiplication using the specialized
allpairs skeleton in SkelCL.

1 kernel void mm(global float* A, global float* B,
global float* C, int m, int d, int n) {

2 int row = get_global_id(0);
3 int col = get_global_id(1);
4 float sum = 0.0f;
5 for (int k = 0; k < d; k++)
6 sum += A[row * d + k] * B[k * n + col];
7 C[row * n + col] = sum; }

Listing 4.6: OpenCL kernel of matrix multiplication without
optimizations [99].

Implementations used for comparison

We compare six different implementations of matrix multiplication:

1. the OpenCL implementation from [99] without optimizations,

2. the optimized OpenCL implementation from [99] using GPU lo-
cal memory,

3. the optimized BLAS implementation by AMD [2] written in
OpenCL (clBLAS version 1.10),

4. the optimized BLAS implementation by Nvidia [43] written in
CUDA (CUBLAS version 5.0),

5. the SkelCL implementation using the generic allpairs skeleton
shown in Listing 4.4,

6. the SkelCL implementation using the specialized allpairs skele-
ton shown in Listing 4.5.

1 . opencl implementation Listing 4.6 shows the kernel of the
first, unoptimized OpenCL implementation from [99].

88 application studies

1 #define T_WIDTH 16
2 kernel void mm(global float* A, global float* B,

global float* C, int m, int d, int n) {
3 local float Al[T_WIDTH][T_WIDTH];
4 local float Bl[T_WIDTH][T_WIDTH];
5 int row = get_global_id(0);
6 int col = get_global_id(1);
7 int l_row = get_local_id(0);
8 int l_col = get_local_id(1);
9 float sum = 0.0f;

10 for (int m = 0; m < d / T_WIDTH; ++m {
11 Al[l_row][l_col] = A[row * d + (m * T_WIDTH + l_col)];
12 Bl[l_row][l_col] = B[(m * T_WIDTH + l_row) * d + col];
13 barrier(CLK_LOCAL_MEM_FENCE);
14 for (int k = 0; k < T_WIDTH; k++)
15 sum += Al[l_row][k] * Bl[k][l_col];
16 barrier(CLK_LOCAL_MEM_FENCE); }
17 C[row * n + col] = sum; }

Listing 4.7: OpenCL kernel of the optimized matrix multiplication using
local memory [99].

2 . optimized opencl implementations The kernel of the op-
timized OpenCL implementation from [99] using local memory is
shown in Listing 4.7. Two fixed-sized arrays of local memory are al-
located in line 3 and line 4. Matrix multiplication is carried out in the
loop starting in line 10. In each iteration, data is loaded into the local
memory (line 11 and line 12) before it is used in the computation in
line 15. Note that two synchronization barriers are required (line 13

and line 16) to ensure that the data is fully loaded into the local mem-
ory and that the data is not overwritten while other work-items are
still using it.

Both OpenCL implementations 1. and 2. from [99] are restrictive:
they are only capable of performing matrix multiplication for square
matrices.

3 . blas implementation by amd The implementation offered
by AMD is called clBLAS, written in OpenCL and is part of their
Accelerated Parallel Processing Math Libraries (APPML) [2].

4 . blas implementation by nvidia CUBLAS [43] is imple-
mented using CUDA and, therefore, can only be used on GPUs built
by Nvidia.

4.4 matrix multiplication 89

Programming effort

Figure 4.7 shows the comparison regarding the number of lines of
code (LOCs) required for each of the six implementations. Figure 4.1
presents the detailed numbers. We did not count those LOCs which
are not relevant for parallelization and are similar in all six implemen-
tations, like initializing the input matrices with data and checking the
result for correctness. For every implementation, we distinguish be-
tween CPU (host) code and GPU (kernel) code.

In the OpenCL implementations, the GPU code includes the kernel
definition, as shown in Listing 4.6 and Listing 4.7; the CPU code in-
cludes the initialization of OpenCL, memory allocations, explicit data
transfer operations, and management of the execution of the kernel.

In the BLAS implementations, the CPU code contains the initializa-
tion of the corresponding BLAS library, memory allocations, as well
as a library call for performing the matrix multiplication; no separate
definition of GPU code is necessary, as the GPU code is defined inside
the library function calls.

For the implementation based on the generic allpairs skeleton (List-
ing 4.4), we count line 1—line 4 and line 10 as the CPU code, and the
definition of the customizing function in line 5—line 9 as the GPU
code. For the implementation based on the specialized allpairs skele-
ton (Listing 4.5), line 5 and line 7 are the GPU code, while all other
lines constitute the CPU code.

Both skeleton-based implementations are clearly the shortest, with
10 and 9 LOCs. The next shortest implementation is the CUBLAS im-
plementation with 65 LOCs – 7 times longer than the SkelCL-based
implementations. The other implementations using OpenCL require
even 9 times more LOCs than the SkelCL-based implementations.

Besides their length, the OpenCL-based implementations require
the application developer to explicitly implement many low-level,
error-prone tasks, like dealing with pointers and offset calculations.
Furthermore, the skeleton-based implementations are more general,
as they can be used for arbitrary allpairs computations, while all other
implementations can compute matrix multiplication only.

Performance experiments

We performed experiments with the six different implementations of
matrix multiplication on two different computer systems with GPUs:

System A: Our general testing system already described in Section 4.1:
an Nvidia S1070 equipped with four Nvidia Tesla GPUs,
each with 240 streaming processors and 4 GByte memory.

System B: An AMD Radeon HD 6990 card containing two GPUs, each
with 1536 streaming processors and 1 GByte memory.

We include the data transfer times to and from the GPU in the results.

90 application studies

0

25

50

75

OpenCL Optimized OpenCL CUBLAS clBLAS Generic allpairs
skeleton

Allpairs skeleton
with zip−reduce

Li
ne

s
of

 C
od

e

CPU Code

GPU Code

Figure 4.7: Programming effort (Lines of Code) of three OpenCL-based, and
one CUDA-based vs. two SkelCL-based implementations.

Lines of Code

Implementation CPU GPU Total

OpenCL 77 7 84

Optimized OpenCL 77 17 94

CUBLAS 81 – 81

clBLAS 65 – 65

Generic allpairs skeleton 5 5 10

Specialized allpairs skeleton 7 2 9

Table 4.1: Lines of Code of all compared implementations.

4.4 matrix multiplication 91

OpenCL Optimized OpenCL CUBLAS clBLAS Generic allpairs skeleton Allpairs skeleton with zip−reduce

0.000

0.025

0.050

0.075

0.100

0.125

1024 x 1024

0.0

0.2

0.4

0.6

0.8

2048 x 2048

0

2

4

6

4096 x 4096

Matrix Size

0

10

20

30

40

50

8192 x 8192

0

100

200

300

400

16384 x 16384

R
un

tim
e

in
 S

ec
on

ds

Figure 4.8: Runtime of different matrix multiplication implementations on
the Nvidia system for different sizes of the matrices.

Runtimes in Seconds

Implementation
1024 2048 4096 8192 16384

×1024 ×2048 ×4096 ×8192 ×16384

OpenCL 0.122 0.791 5.778 48.682 472.557

Optimized OpenCL 0.017 0.105 0.752 5.683 51.337

CUBLAS 0.012 0.059 0.387 2.863 22.067

clBLAS 0.061 0.246 1.564 11.615 90.705

Generic allpairs
0.121 0.792 5.782 48.645 471.235skeleton

Specialized allpairs
0.024 0.156 1.134 8.742 68.544skeleton

Table 4.2: Runtime results for matrix multiplication on the Nvidia system.

system a (one gpu) Figure 4.8 shows the runtime of all six imple-
mentations for different sizes of the matrices (for readability reasons,
all charts are scaled differently). For detailed numbers, see Table 4.2.

Clearly, the naive OpenCL implementation and the implementation
using the generic allpairs skeleton are the slowest, because both do not
use local memory, in contrast to all other implementations.

The implementation using the specialized allpairs skeleton per-
forms 5.0 to 6.8 times faster than the generic allpairs skeleton, but
is 33% slower on the largest matrices than the optimized OpenCL-
based implementation. However, the latter implementation can only
be used for square matrices and, therefore, it benefits from omitting
many conditional statements and boundary checks.

CUBLAS is the fastest of all implementations, as it is highly tuned
specifically for Nvidia GPUs using CUDA. The clBLAS implementa-
tion by AMD using OpenCL performs not as well: presumably, it
is optimized for AMD GPUs and performs poorly on other hard-
ware. Our optimized allpairs skeleton implementation outperforms
the clBLAS implementation for all matrix sizes tested.

92 application studies

OpenCL Optimized OpenCL clBLAS Generic allpairs skeleton Allpairs skeleton with zip−reduce

0.00

0.03

0.06

0.09

512 x 512

0.000

0.025

0.050

0.075

0.100

0.125

1024 x 1024

0.0

0.1

0.2

2048 x 2048
Matrix Size

0.0

0.5

1.0

1.5

2.0

4096 x 4096

0

5

10

15

8192 x 8192

R
un

tim
e

in
 S

ec
on

ds
Figure 4.9: Runtime of all compared implementations for a matrix multipli-

cation on the AMD system using one GPU.

Runtimes in Seconds

Implementation
512 1024 2048 4096 8192

×512 ×1024 ×2048 ×4096 ×8192

OpenCL 0.008 0.046 0.284 2.178 17.098

Optimized OpenCL 0.006 0.023 0.111 0.743 5.569

clBLAS 0.113 0.120 0.143 0.329 2.029

Generic allpairs
0.007 0.038 0.278 2.151 16.983skeleton

Specialized allpairs
0.005 0.023 0.141 1.025 7.842skeleton

Table 4.3: Runtime results for all tested implementations of matrix multipli-
cation on the AMD system.

system b (one gpu) Figure 4.9 shows the measured runtime in
seconds for five of the six implementations for different sizes of the
matrices. Detailed numbers can be found in Table 4.3. We could not
use the Nvidia-specific CUBLAS implementation as it does not work
on the AMD GPU.

For bigger matrices, the slowest implementations are, again, the
unoptimized OpenCL implementation and the implementation using
the generic allpairs skeleton.

The optimized OpenCL implementation and the specialized allpairs
skeleton perform similarly. For matrices of size 8192× 8192, the opti-
mized OpenCL implementation is about 30% faster.

The clBLAS implementation performs very poorly for small matri-
ces, but is clearly the fastest implementation for bigger matrices. Sim-
ilar to the CUBLAS implementation on the Nvidia hardware, it is not
surprising that the implementation by AMD performs very well on
their own hardware.

4.4 matrix multiplication 93

Generic allpairs skeleton Allpairs skeleton with zip−reduce

0

2

4

6

1 2 3 4

4096 x 4096

0

10

20

30

40

50

1 2 3 4

Number of GPUs

8192 x 8192

0

100

200

300

400

1 2 3 4

16384 x 16384

R
un

tim
e

in
 S

ec
on

ds

Figure 4.10: Runtime of the allpairs based implementations using multiple
GPUs.

Runtimes in Seconds GFlops

Implementation
Number 4096 8192 16384 16384

of GPUs ×4096 ×8192 ×16384 ×16384

Generic
allpairs
skeleton

1 GPU 5.772 48.645 471.328 18.72

2 GPUs 2.940 24.495 236.628 37.43

3 GPUs 2.000 16.532 158.611 56.17

4 GPUs 1.527 12.540 119.786 74.90

Specialized
allpairs
skeleton

1 GPU 1.137 8.740 68.573 130.93

2 GPUs 0.613 4.588 35.294 262.18

3 GPUs 0.461 3.254 24.447 392.87

4 GPUs 0.368 2.602 19.198 523.91

Table 4.4: Runtime of the allpairs based implementations of matrix multipli-
cation using multiple GPUs. For the matrices of size 16384× 16384
the results are also shown in GFlops.

system a (multiple gpus) Figure 4.10 shows the runtime behav-
ior for both allpairs skeleton-based implementations when using up to
four GPUs of our multi-GPU system. The other four implementations
are not able to handle multiple GPUs and would have to be specially
rewritten for such systems. Newer versions of Nvidia’s CUBLAS im-
plementation support the execution on multiple GPUs as well. We
observe a good scalability for both of our skeleton-based implemen-
tations, achieving speedups between 3.09 and 3.93 when using four
GPUs. Detailed numbers can be found in Table 4.4. For the matrices of
size 16384× 16384, performance is also provided in GFlops; to com-
pute this value we excluded the data-transfer time (as usually done
in related work) to enable better comparison with related work.

94 application studies

(a) The Lena image with noise. (b) The Lena image after applying
the Gaussian blur.

Figure 4.11: Application of the Gaussian blur to an noised image.

4.5 image processing applications

Many image processing applications are inherently parallel as they of-
ten independently process the pixels of an image. Common examples
range from simple thresholding over noise reduction applications to
techniques used in edge detection and pattern recognition [152]. In
this section we will study three application examples from image pro-
cessing and how they can be implemented using SkelCL.

We start by looking at the Gaussian blur application which can be
used to reduce noise in images and is often used as a preprocess-
ing step in more complex algorithms. We will then discuss two algo-
rithms used for edge detection in images: the Sobel edge detection
application and the more complex Canny edge detection algorithm.

These three applications can all be expressed using the stencil skele-
ton introduced in Section 3.2.4, but they have different characteristics.
The Gaussian blur applies a single stencil computation, possibly it-
erated multiple times, for reducing the noise in images. The Sobel
edge detection applies a stencil computation once to detect edges
in images. The more advanced Canny edge detection algorithm con-
sists of a sequence of stencil operations which are applied to obtain
the final result. For each of the three applications, we compare the
performance using our two implementations of the stencil skeleton:
MapOverlap and Stencil with native OpenCL implementations using
an input image of size 4096× 3072.

4.5.1 Gaussian Blur

The Gaussian blur is a standard algorithm used in image process-
ing [152]. One common application is reduction of image noise as
shown in Figure 4.11. The image on the left has some noise as it is

4.5 image processing applications 95

typically produced by halftone printing used to print newspapers.
The Gaussian blur has been applied to reduce the noise and produce
the image on the right.

The Gaussian blur computes a weighted average for every pixel
based on the neighboring pixels color values. Using SkelCL this ap-
plication can easily be expressed using the stencil skeleton.

SkelCL Implementation

Equation (4.10) shows the Gaussian blur expressed in the SkelCL pro-
gramming model using the stencil skeleton.

gauss M = stencil f 1 0 M where:

f

Mi−1,j−1 Mi−1,j Mi−1,j+1

Mi,j−1 Mi,j Mi,j+1

Mi+1,j−1 Mi+1,j Mi+1,j+1

 =

1∑
k=−1

1∑
l=−1

(G k l) ·Mi+k,j+k

9
,

(4.10)

G x y =
1

2πσ2
e
− x2+y2

2σ2

and 0 is the constant function always returning zero.

The function G is the two-dimensional Gaussian function which is
used in the customizing function f to weight the neighboring values
Mi,j. The values obtained by applying G can be precomputed, as G
is only evaluated with values in the interval [−1, 1] for x and y.

Listing 4.8 shows the SkelCL-based implementation of the Gaus-
sian blur using the MapOverlap implementation of the stencil skeleton.
Here the immediate neighboring pixels are accessed (line 4—line 6)
and used to compute a weighted value for each pixel. The function
computing the weighted sum is omitted here. It is also possible to
extend the range of the Gaussian blur and include more neighboring
pixel values in the computation.

Programming effort

Figure 4.12 shows the program sizes (in lines of code) for the four im-
plementations of the Gaussian blur. The application developer needs
57 lines of OpenCL host code and 13 LOCs for performing a Gaus-
sian blur only using global memory. When using local memory, some
more arguments are passed to the kernel, thus, increasing the host-
LOCs to 65, while the LOCs for the kernel function, which copies
all necessary elements for a work-group’s calculation into local mem-
ory, requires 88 LOCs including explicit out-of-bounds handling and
complex index calculations. The MapOverlap and Stencil versions

96 application studies

1 Matrix<char> gaussianBlur(const Matrix<char>& image) {
2 auto gauss = mapOverlap(
3 [](Neighborhood<char>& in) {
4 char ul = in[{-1, -1}];
5 ...
6 char lr = in[{+1, +1}];
7 return computeGaussianBlur(ul, ..., lr); },
8 1, BorderHandling::NEUTRAL(0));
9 return gauss(image); }

Listing 4.8: Implementation of the Gaussian blur in SkelCL using the
MapOverlap implementation of the stencil skeleton.

0

50

100

150

OpenCL global memory
OpenCL local memory

MapOverlap Stencil

Li
ne

s
of

 C
od

e

CPU code

GPU code

SkelCL

Figure 4.12: Lines of code of the Gaussian blur using a naïve OpenCL imple-
mentation with global memory, an optimized OpenCL version
using local memory, and SkelCL’s MapOverlap and Stencil im-
plementations of the stencil skeleton.

are similar and both require only 15 LOCs host code and 9 LOCs
kernel code to perform a Gaussian blur. The support for multi-GPU
systems is implicitly provided when using SkelCL’s skeletons, such
that the kernel remains the same as for single-GPU systems. This is an
important advantage of SkelCL over the OpenCL implementations of
the Gaussian blur which are single-GPU only and require additional
LOCs when adapting them for multi-GPU environments.

Performance experiments

Figure 4.13 shows the measured total runtime including data trans-
fers of the Gaussian blur using:

1) a naïve OpenCL implementation using global memory,

2) an optimized OpenCL version using local memory,

3) the MapOverlap-based implementation, and

4.5 image processing applications 97

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10
Size of Stencil Shape

R
un

tim
e

in
 s

ec
on

ds

OpenCL Global Memory OpenCL Local Memory MapOverlap Stencil

Figure 4.13: Runtime of the Gaussian blur using a naïve OpenCL imple-
mentation with global memory, an OpenCL version using local
memory and SkelCL’s MapOverlap and Stencil skeletons.

4) the Stencil-based implementation, correspondingly.

We can observe that for larger stencil shape sizes, the MapOverlap and
Stencil-based versions outperform the naïve OpenCL implementa-
tion by 65% and 62%, respectively. The optimized OpenCL version,
which copies all necessary elements into local memory prior to cal-
culation, is 5% faster than MapOverlap and 10% faster than Stencil
for small stencil shapes. When increasing the stencil shape size, this
disadvantage is reduced to 3% for MapOverlap and 5% for Stencil
with stencil shape’s extent of 10 in each direction.

The Stencil implementation is slower for small stencil shapes than
the MapOverlap implementation, up to 32% slower for an stencil shape
size of 1. This is due to the increased branching required in the Sten-
cil implementation, as discussed in more detail in Section 3.3.4.5.
However, this disadvantage is reduced to 4.2% for the stencil shape
size of 5 and becomes negligible for bigger stencil shape sizes. As the
ratio of copying into local memory decreases in comparison to the
number of calculations when enlarging the stencil shape’s size, the
kernel function’s runtime in the Stencil implementation converges
to the MapOverlap implementation’s time. The Stencil implementa-
tion’s disadvantage is also due to its ability to manage multiple sten-
cil shapes and explicitly support the use of iterations. While both
features are not used in this application example, they incur some
overhead for the implementation as compared to the MapOverlap im-
plementation for simple stencil computations.

Figure 4.14 shows the speedup achieved on the Gaussian blur us-
ing the Stencil implementation on up to four devices. The higher
the computational complexity for increasing size of stencil shape, the
better the overhead is hidden, leading to a maximum speedup of 1.90
for two devices, 2.66 for three devices, and 3.34 for four devices, for
a large size of the stencil shape of 20.

98 application studies

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Size of Stencil Shape

S
pe

ed
up ● 1 Device

2 Devices
3 Devices
4 Devices

Figure 4.14: Speedup of the Gaussian blur application on up to four GPUs.

(a) Original image. (b) Image after Sobel edge detec-
tion.

Figure 4.15: The Lena image [71] often used as an example in image process-
ing before (left) and after (right) applying Sobel edge detection.

4.5.2 Sobel Edge Detection

The Sobel edge detection produces an output image in which the
detected edges in the input image are marked in white and plain
areas are shown in black. The effect is shown in Figure 4.15, where
the original image is shown on the left and the output of Sobel edge
detection applied to it on the right.

Listing 4.9 shows the sequential algorithm of the Sobel edge de-
tection in pseudo-code, with omitted boundary checks for clarity. In
this version, for computing an output value out_img[i][j] the input
value img[i][j] and the direct neighboring elements are weighted
and summed up horizontally and vertically. The stencil skeleton is a
perfect fit for implementing the Sobel edge detection.

4.5 image processing applications 99

1 for (i = 0; i < width; ++i)
2 for (j = 0; j < height; ++j)
3 h = -1*img[i-1][j-1] +1*img[i+1][j-1]
4 -2*img[i-1][j] +2*img[i+1][j]
5 -1*img[i-1][j+1] +1*img[i+1][j+1];
6 v = ...;
7 out_img[i][j] = sqrt(h*h + v*v);

Listing 4.9: Sequential implementation of the Sobel edge detection.

SkelCL Implementation

Equation (4.11) shows the implementation of the Sobel edge detection
in the SkelCL programming model.

sobel M = stencil f 1 0 M where: (4.11)

f

Mi−1,j−1 Mi−1,j Mi−1,j+1

Mi,j−1 Mi,j Mi,j+1

Mi+1,j−1 Mi+1,j Mi+1,j+1

 =
√
h2 + v2

h =

2∑
k=0

2∑
l=0

Gxk,l ·Mi+k−1,j+k−1

v =

2∑
k=0

2∑
l=0

Gyk,l ·Mi+k−1,j+k−1

Gx =

 −1 0 +1

−2 0 +2

−1 0 +1

Gy =

 −1 −2 −1

0 0 0

+1 +2 +1


and 0 is the constant function always returning 0.

The formula resembles the sequential implementation shown in List-
ing 4.9 where the final result is computed as the square root of the
sum of two squared terms h and v. These are computed as weighted
sums of the neighboring values Mi,j. The weights are given by the
two matrices Gx and Gy.

Listing 4.10 shows the SkelCL implementation using the MapOver-
lap implementation of the stencil skeleton. The implementation is
straightforward and very similar to the formula in Equation (4.11)
and the sequential version in Listing 4.9.

Programming effort

Listing 4.11 shows a part of the rather simple OpenCL implementa-
tion for Sobel edge detection provided by AMD as an example appli-
cation in their software development kit [11]. The actual computation
is omitted in the listing, since it is quite similar to the sequential ver-

100 application studies

1 Matrix<char> sobelEdge(const Matrix<char>& image) {
2 auto sobel = mapOverlap(
3 [](Neighborhood<char>& in) {
4 short h = -1*in[{-1,-1}] +1*in[{+1,-1}]
5 -2*in[{-1, 0}] +2*in[{+1, 0}]
6 -1*in[{-1,+1}] +1*in[{+1,+1}];
7 short v = ...;
8 return sqrt(h*h + v*v); },
9 1, BorderHandling::NEUTRAL(0));

10 return soble(img); }

Listing 4.10: SkelCL implementation of the Sobel edge detection.

1 kernel void sobel_kernel(global const uchar* img,
2 global uchar* out_img) {
3 uint i = get_global_id(0); uint j = get_global_id(1);
4 uint w = get_global_size(0); uint h = get_global_size(1);
5 // perform boundary checks
6 if(i >= 1 && i < (w-1) && j >= 1 && j < (h-1)) {
7 char ul = img[((j-1)*w)+(i-1)];
8 char um = img[((j-1)*w)+(i+0)];
9 char ur = img[((j-1)*w)+(i+1)];

10 // ... 6 more
11 out_img[j * w + i] = computeSobel(ul, um, ur, ...); }}

Listing 4.11: Additional boundary checks and index calculations for Sobel
algorithm, necessary in the standard OpenCL implementation.

sion in Listing 4.9. The listing shows that extra low-level code is nec-
essary to deal with technical details, like boundary checks and index
calculations, which are arguably quite complex and error-prone.

We also compare against a more optimized OpenCL implementa-
tion by Nvidia which makes use of the fast local GPU memory.

The SkelCL implementation is significantly shorter than the two
OpenCL-based implementations. The SkelCL program only comprises
few lines of code as shown in Listing 4.10. The AMD implementa-
tion requires 37 lines of code for its kernel implementation and the
more optimized Nvidia implementation requires even 208 lines of
code. Both versions require additional lines of code for the host pro-
gram which manages the execution of the OpenCL kernel. No index
calculations or boundary checks are necessary in the SkelCL version
whereas they are crucial for a correct implementation in OpenCL.

4.5 image processing applications 101

0.00

0.05

0.10

0.15

0.20

0.25

OpenCL (AMD) OpenCL (Nvidia) SkelCL

R
un

tim
e

in
 m

se
c

Figure 4.16: Performance results for Sobel edge detection

Performance experiments

Figure 4.16 shows the measured runtime of the two OpenCL versions
(from the AMD and Nvidia SDKs) vs. the SkelCL version with the
stencil skeleton presented in Listing 4.10. Here only the kernel run-
times are shown, as the data transfer times are equal for all versions.
We used the popular Lena image [71] with a size of 512× 512 pixel as
an input. The AMD version is clearly slower than the two other imple-
mentations, because it does not use the fast local memory which the
Nvidia implementation and the MapOverlap implementation of the
stencil skeleton of SkelCL do. SkelCL completely hides the memory
management details inside its implementation from the application
developer. The Nvidia and SkelCL implementations perform similarly
fast. In this particular example, SkelCL even slightly outperforms the
implementation by Nvidia.

4.5.3 Canny Edge Detection

The Canny edge detection algorithm is a more complex algorithm to
detect edges in images than the Sobel edge detection presented in
the previous section. For the sake of simplicity we consider a slightly
simplified version, which applies the following stencil operations in a
sequence: 1), a noise reduction operation is applied, e. g., a Gaussian
blur; 2), an edge detection operator like the Sobel edge detection is
applied; 3), the so-called non-maximum suppression is performed,
where all pixels in the image are colored black except pixels being
a local maximum; 4), a threshold operation is applied to produce
the final result. A more complex version of the algorithm performs
the edge tracking by hysteresis, as an additional step. This results in
detecting some weaker edges, but even without this additional step
the algorithm usually achieves good results.

102 application studies

1 Matrix<char> sobelEdge(const Matrix<char>& image) {
2 auto gauss = stencil(...);
3 auto sobel = stencil(...);
4 auto nms = stencil(...);
5 auto threshold = stencil(...);
6 StencilSequence<Pixel(Pixel)>
7 canny(gauss, sobel, nms, threshold);
8 return canny(image); }

Listing 4.12: Structure of the Canny algorithm expressed as a sequence of
skeletons.

SkelCL Implementation

In SkelCL, each single step of the Canny algorithm can be expressed
using the stencil skeleton. The last step, the threshold operation, can
be expressed using SkelCL’s simpler map skeleton, as the user thresh-
old function only checks the value of the current pixel. In the SkelCL
library the Stencil skeleton’s implementation automatically uses the
simpler map skeleton’s implementation when the user specifies a sten-
cil shape which extents are 0 in all directions.

To implement the Canny algorithm in SkelCL, the single steps can
be combined as shown in Listing 4.12. The individual steps are de-
fined in line 2—line 5 and then combined to a sequence of stencils in
line 7. During execution (line 8), the stencil operations are performed
in the order which is specified when creating the StencilSequence
object.

Performance experiments

Figure 4.17 shows the measured runtime of the Canny algorithm us-
ing the two presented implementations. As the MapOverlap imple-
mentation appends padding elements to the matrix representing the
image, the matrix has to be downloaded, resized and uploaded again
to the GPU between every two steps of the sequence. This additional
work leads to an increased time for data transfers. The Gaussian blur
with a stencil shape extent of 2, as well as the Sobel edge detection
and the non-maximum suppression with a stencil shape of 1, are
2.1 to 2.2 times faster when using MapOverlap. However, the thresh-
old operation, which is expressed as the map skeleton in the Stencil
sequence, is 6.8 times faster than MapOverlap’s threshold operation.
Overall, we observe that when performing sequences of stencil oper-
ations, the Stencil implementation reduces the number of copy op-
erations and, therefore, leads to a better overall performance. When
performing the Canny algorithm, the Stencil implementation out-
performs the MapOverlap implementation by 21%.

4.6 medical imaging 103

0

100

200

300

400

500

600

MapOverlap Stencil

R
un

tim
e

in
 m

se
c

Data Transfer Gauss NMS Sobel Threshholding

Figure 4.17: Runtime of the Canny edge detection algorithm comparing the
MapOverlap and Stencil skeleton implementations.

4.6 medical imaging

At the beginning of Chapter 3 we used the LM OSEM medical imag-
ing application as our motivational example and application study
to identify requirements for a high-level programming model. In this
section we will now study how we can express the LM OSEM ap-
plication using algorithmic skeletons and how the parallel container
data types and SkelCL’s redistribution feature simplify the program-
ming of multi-GPU systems. We will start by briefly reintroducing
the application and its sequential implementation before moving to
the parallel implementation using first traditional OpenCL and then
SkelCL for comparison. A particular focus of this section will be on
multi-GPU systems and how SkelCL drastically simplifies their pro-
gramming.

The LM OSEM Algorithm

List-Mode Ordered Subset Expectation Maximization (LM OSEM) [133,
137] is a time-intensive, production-quality algorithm for medical im-
age reconstruction. LM OSEM takes a set of events from a PET scan-
ner and splits them into s equally sized subsets. Then, for each subset
Sl, l ∈ 0, . . . , s− 1, the following computation is performed:

fl+1 = flcl; cl =
1

ATN1

∑
i∈Sl

(Ai)
T 1

Aifl
. (4.12)

Here f is the 3D reconstruction image which is refined over time. A
is a matrix where element aik of row Ai represents the length of

104 application studies

1 for (int l = 0; l < subsets; l++) {
2 // read subset
3

4 // step 1: compute error image cl
5 for (int i = 0; i < subset_size; i++) {
6 // compute Ai
7 // compute local error
8 // add local error to cl
9 }

10

11 // step 2: update reconstruction image f
12 for (int k = 0 ; k < image_size; k++) {
13 if (c_l[k] > 0.0) { f[k] = f[k] * c_l[k]; }
14 }
15 }

Listing 4.13: Sequential code for LM OSEM comprises one outer loop with
two nested inner loops.

intersection of the line between two PET detectors for a measured
event i with voxel k of the reconstruction image. The factor in front
of the sum can be precomputed and is, therefore, omitted from here
on.

sequential implementation Listing 4.13 shows the sequen-
tial code for LM OSEM as already presented in Section 3.1.1. The
sequential LM OSEM is an iterative algorithm refining the recon-
struction image f over time. At each iteration two major steps are
performed:

Step 1: the error image cl is computed by performing three sub-
steps: 1) computation of the rowAi; 2) computing the local error
for row Ai; 3) adding the local error to cl;

Step 2: update the reconstruction image f using the error image
cl computed in Step 1.

parallelization strategy For parallelization two possible de-
composition strategies can be considered for the LM OSEM algorithm
as initially suggested in [96]: Projection Space Decomposition (PSD)
and Image Space Decomposition (ISD).

In PSD, the subsets Sl are split into sub-subsets that are processed
simultaneously while all processing units access a common recon-
struction image f and error image c. Using this approach, we are able
to parallelize Step 1 of the algorithm, but Step 2 is performed by a
single processing unit. On a multi-GPU system, we have to copy the
reconstruction image to all GPUs before each iteration, and we have

4.6 medical imaging 105

to merge all GPUs’ error images computed in Step 1 before proceed-
ing with Step 2. While both steps are easy to implement, Step 2 does
not efficiently use the available processing units.

In ISD, the reconstruction image f is partitioned, such that each
processing unit processes the whole subset Sl with respect to a single
part of the reconstruction image f. Thus we are able to parallelize both
steps of LM OSEM, but each processing unit still accesses the whole
reconstruction image f in order to compute the error value for each
path before merging it with the error image c. On a multi-GPU sys-
tem, the whole subset Sl has to be copied to each GPU in Step 1. ISD
requires large amounts of memory (up to several GB in practically rel-
evant cases) to store all paths computed in Step 1. Summarizing, it is
hard to implement Step 1 on the GPU, while Step 2 can be parallelized
easily.

Therefore, we use a hybrid strategy for implementing LM OSEM:
Step 1 is parallelized using the PSD approach, while we use ISD
for Step 2. This results in the sequence of five phases shown in Fig-
ure 4.18:

1. Upload: the subset (S) is divided into sub-subsets (one per GPU).
One sub-subset and the reconstruction image (f) are uploaded
to each GPU;

2. Step 1: each GPU computes the local error image (cl) for its sub-
subset;

3. Redistribution: the local error images that are distributed on all
GPUs are downloaded and combined into a single error image
on the host by performing element-wise addition. Afterwards,
the combined error image and reconstruction image are parti-
tioned, in order to switch the parallelization strategy from PSD
to ISD. The corresponding parts of both images are distributed
to the GPUs again;

4. Step 2: each GPU updates its part of the reconstruction image;

G
P
U

0
C
P
U

G
P
U

1

S fl

S fl

S fl

cl

cl

⇒

⇒

cl

cl

cl

fl

fl

fl

fl

fl

⇒

⇒

fl+1

Upload Redistribution Download

Step 1 Step 2

Figure 4.18: Parallelization schema of the LM OSEM algorithm.

106 application studies

5. Download: finally, all parts of the reconstruction image are down-
loaded from the GPUs to the host and merged into a single re-
construction image.

SkelCL Implementation

The SkelCL program in Listing 4.14 reflects the described five phases
in a concise, high-level manner, as shown by the corresponding com-
ments. The subset s, the error image cl, and the reconstruction image
f are declared as SkelCL vectors which enables an easy and auto-
matic data transfer between GPUs. As data transfers are performed
implicitly by SkelCL, the upload phase is implemented by simply set-
ting vector distributions (line 17—line 19), while the download phase
is performed implicitly when the SkelCL containers are accessed or
redistributed. The redistribution phase is implemented by changing
the distributions of the corresponding SkelCL containers (line 25 and
line 26).

The two computational steps are implemented using the map and
zip skeleton from SkelCL, correspondingly, as follows.

The first step – the computation of the error image cl – is imple-
mented using the map skeleton. For each event e of the currently pro-
cessed subset, the row Ai is computed (line 3). As Ai is sparsely pop-
ulated it is stored as a special data structure, called Path, to reduce
its memory footprint. Next, the local error is computed using Ai to-
gether with the current reconstruction image f which is passed to
the map skeleton as an additional argument. Finally, the error image
cl is updated with the local error. The error image is also provided
as an additional argument, but when executing the map skeleton cl
is wrapped using the out helper function (line 22). This marks the
additional argument as output parameter, i. e., the SkelCL implemen-
tation is notified that this argument will be modified by the customiz-
ing function. It is interesting to point out that the map skeleton does
not return a value, i. e., its return type is void. The skeleton is only
executed for its side effects on cl.

The second step – the update of the reconstruction image f – is
implemented using the zip skeleton. Here the customizing function
operates on pairs of the voxels of the reconstruction and the error
image, following the image space decomposition (ISD) strategy. If
the voxel of the error image is greater than zero, the voxel of the
reconstruction image is updated with the product of the pair of voxels
from the reconstruction and the error image.

Programming effort

The lengthy and cumbersome OpenCL implementation of the LM
OSEM was already discussed in Chapter 3. It is based on the work
presented in [137]. OpenCL requires a considerable amount of boiler-

4.6 medical imaging 107

1 auto computeCl = mapVector(
2 [](Event e, const Vector<float>& f, Vector<float>& cl) {
3 Path Ai = computeAi(e);
4 float c = computeLocalError(f, Ai);
5 addLocalErrorToCl(cl, c, Ai); });
6

7 auto updateF = zipVector(
8 [](float f_i, float cl_i) {
9 if (cl_i > 0.0) return f_i * cl_i; else return f_i; });

10

11 Vector<float> f = readStartImage();
12 for (l = 0; l < subsets; l++) {
13 Vector<Event> s = read_subset();
14 Vector<float> cl(image_size);
15

16 /* Upload */
17 s.setDistribution(block);
18 f.setDistribution(copy);
19 cl.setDistribution(copy, add);
20

21 /* Step 1: compute error image cl */
22 computeCl(s, f, out(cl));
23

24 /* Redistribution */
25 f.setDistribution(block);
26 cl.setDistribution(block);
27

28 /* Step 2: update image estimate f */
29 f = updateF(f, cl);
30

31 /* Download (implicit) */}

Listing 4.14: SkelCL code of the LM OSEM algorithm

108 application studies

OpenCL SkelCL

0

200

400

600

 single multi single multi
Li

ne
s

of
 C

od
e

 CPU Code
 GPU Code

Figure 4.19: Lines of code for CPU and GPU of the LM OSEM implementa-
tions on single- and multi-GPU systems.

plate code for running a kernel on multiple GPUs, in particular for
uploading and downloading data to and from the GPUs.

The parallelization strategies are the same for both versions. How-
ever, when using SkelCL’s vector data type, we avoid additional pro-
gramming effort to implement data transfer between host and GPU
or between multiple GPUs, and we obtain a multi-GPU-ready imple-
mentation of LM OSEM for free.

Figure 4.19 shows the lines of code required for both implemen-
tation. The amount of lines required on the GPU is similar. This is
not surprising, as these code describes the computation performed
on the GPU which is similar for both implementations. The host code
required for implementing the management of the GPU execution
differs significantly across implementations. For a single GPU, the
OpenCL-based implementation requires 206 LOCs, i. e., more than 11

times the number of lines than the SkelCL program which has 18

LOCs.
Using multiple GPUs in OpenCL requires explicit code for addi-

tional data transfers between GPUs. This accounts for additional 37

LOCs for the OpenCL-based implementation. In SkelCL, only 8 addi-
tional LOCs are necessary to describe the changes of data distribution.
These lines are easily recognizable in the SkelCL program (line 17—
line 19 and line 25—line 26 in Listing 4.14, plus 3 lines during the
initialization) and make this high-level code arguably better under-
standable and maintainable than the OpenCL version.

Performance experiments

We evaluated the runtimes of our two implementations of LM OSEM
by reconstructing an image of 150 × 150 × 280 voxels from a real-
world PET data set with about 108 events. From this data set, about
102 equally sized subsets are created. In our experiments, we mea-
sured the average runtime of processing one subset. To perform a full
reconstruction producing a detailed reconstruction image, all subsets

4.7 physics simulation 109

OpenCL SkelCL

0

1

2

3

4

1 2 4 1 2 4
Number of GPUs

R
un

tim
e

in
 s

ec
on

ds

Figure 4.20: Average runtime of one iteration of the LM OSEM algorithm
using OpenCL and SkelCL.

are processed multiple times, making LM OSEM a time-intensive ap-
plication that runs several hours on a single-core CPU.

Figure 4.20 shows the runtime of both implementations of LM
OSEM using up to four GPUs. While the differences in the program-
ming effort to implement the SkelCL and OpenCL versions are signif-
icant, the differences in runtime are quite small. When running on a
single GPU, both implementations take the same time (3.66 seconds)
to complete. With two and four GPUs, the OpenCL implementation
slightly outperforms the SkelCL implementation, being 1.2% and 4.7%
faster. We presume that the slightly increasing overhead of SkelCL is
caused by the more complex data distribution performed when using
more GPUs. Comparing to the significant reduction in programming
effort, the runtime overhead of less than 5% is arguably a moderate
one. In conclusion, this example shows that SkelCL is suitable for im-
plementing a real-world application and provides performance close
to a native OpenCL implementation.

4.7 physics simulation

Physics simulations are a very important class of scientific applica-
tions. We study one representative: the Finite-Difference-Time-Domain
(FDTD) Method used for Random Lasing Simulations. This simulation
from the field of optical physics simulates the propagation of light
through a medium.

In the simulation two fields, the electric field ~E and the magnetic
field ~H, are iteratively updated using stencil computations. We use
the Maxwell’s equations which are the basic equations describing
electrodynamic processes in nature to describe the light propagating
through a non-magnetic (dielectric) medium.

110 application studies

Equation (4.13)—Equation (4.16) show the Maxwell’s equations
consisting of four coupled partial differential equations (PDEs).

~∇~E (~r, t) = 0, (4.13)
~∇~H (~r, t) = 0, (4.14)

∂~H (~r, t)
∂t

= −
1

µ0
~∇× ~E (~r, t) , (4.15)

∂~D (~r, t)
∂t

=
1

ε0
~∇× ~H (~r, t) , (4.16)

To couple the polarisation of a medium ~P to the electric field, Equa-
tion (4.17) is introduced:

~E (~r, t) =
~D (~r, t) − ~P

(
~r, t, ~N

)
ε0εr (~r)

(4.17)

Here ~N is the induced energy distribution in the medium using the
model proposed in [95]. The parameters µ0, ε0 and εr describe the
permeability and permittivity of free space and the relative permittiv-
ity of the dielectric medium.

To solve this set of coupled PDEs, a method called Finite-Difference-
Time-Domain (FDTD) [160] can be used. Here we use a form where
the electric and magnet field are discretized within a n-dimensional
regular grid. ~E and ~H are shifted against each other by a half grid-
cell. This allows the calculation of the new values by computing finite
differences between two values of the grid. Using the FDTD method,
we implemented a simulation of the effect of random lasing on a
nano-meter scale [27] for our evaluation.

Figure 4.21 shows a visualization of the electric field (and the field
intensity) after about 1 ps of simulation time equal to 60 000 iterations.
The shown field distribution can be found also in [138, 159], however
the simulation parameters are different.

SkelCL Implementation

We implemented a two-dimensional version using SkelCL as well as
a manually tuned OpenCL implementation. To solve the PDEs in
Equation (4.15) and Equation (4.16), two separated three-point stencil
computations are performed and one map computation for the gain-
model is necessary. Equation (4.13) and Equation (4.14) are implicitly
solved by the FDTD method [160]. Listing 4.15 shows the SkelCL code
of the application: in every iteration first the energy distribution is
updated (line 11) using a map skeleton (defined in line 1); then the
first stencil (defined in line 2) updates the electric field ~E by combin-
ing a single element of ~E with three elements of the magnetic field ~H

4.7 physics simulation 111

Figure 4.21: The image shows a 3D representation of the intensity for the 2D
electric field as computed by the SkelCL FDTD implementation
after 60 000 iterations.

(line 12); and finally the second stencil (defined in line 3) updates ~H

by combining a single element of ~H with three elements of ~E (line 13).
Please note that the two stencil computations require both fields (~E

and ~H) as input. To implement this, we use the additional argument
feature of SkelCL which allows the additional field to be passed to
skeletons on execution (see line 12 and line 13). The additional ar-
guments are passed unchanged to the customizing function of the
skeleton, therefore, the function customizing the stencil in line 4 now
accepts ~H as a second parameter. This feature greatly increases the
flexibility of applications written in SkelCL.

Performance experiments

In the evaluation we used a 2048× 2048 sized matrix with a spatial
resolution of 100 cells per µm. This matrix corresponds to a square-
shaped medium with the edge length of 20.1µm. The medium size
is actually smaller than the matrix size because of the border han-
dling. To provide a physically correct simulation, the borders of the
magnet field must be treated specially. The Stencil skeleton in SkelCL
provides sufficient functionality to allow for such border handling in
the computation code.

We compared our SkelCL based implementation to a handwrit-
ten, fine-tuned OpenCL implementation which is based on [100] and
was initially developed and described in [80]. The OpenCL version
is specifically designed for modern Nvidia GPUs. In particular, it
exploits the L1 and L2 caches of the Nvidia Fermi and Kepler ar-
chitecture and does not explicitly make use of the local memory.
We performed the experiments on a system with a modern Nvidia
K20c Kepler GPU with 5GB memory and 2496 compute cores. Fig-

112 application studies

1 auto updateEnergyDist = map(...);
2 auto updateEField = stencil(...);
3 auto updateHField = stencil(
4 [](Neighborhood<float4>& E, Matrix<float4>& H) { ... });
5

6 Matrix<float4> N; // energy distribution in the medium
7 Matrix<float4> E; // E (electric) field
8 Matrix<float4> H; // H (magnetic) field
9

10 for (...) { // for each iteration
11 updateEnergyDist(out(N), N, out(E));
12 updateEField(out(E), H, E);
13 updateHField(out(H), E, H); }

Listing 4.15: Source code of the FDTD application in SkelCL.

0

1

2

3

4

5

OpenCL SkelCLR
un

tim
e

fo
r

on
e

ite
ra

tio
n

in
 m

se
c

Map
First Stencil
Second Stencil

Figure 4.22: Runtime for one iteration of the FDTD application.

ure 4.22 shows the median runtimes of a simulation time of 1 ps
equal to 60 000 iterations. The SkelCL version slightly outperforms
the OpenCL version by 2%. The two stencil skeletons achieve ∼10%
faster runtimes than the corresponding OpenCL kernels but the map
skeleton is ∼20% slower, because it reads and writes all elements ex-
actly once, while the customized OpenCL kernel does not write back
all elements. For this application it seems beneficial to make explicit
usage of the local memory as our implementation of the Stencil skele-
ton does, instead of relying on the caches of the hardware, as the
OpenCL implementation does.

4.8 summary

Figure 4.23 and Figure 4.24 summaries the findings of this chapter.
Figure 4.23 shows the lines of code required for implementing five

of the applications examples in OpenCL (on the left) and SkelCL (on

4.8 summary 113

mandelbrot linear algebra
(dot product)

matrix
multiplication

image processing
(gaussian blur)

medical imaging
(LM OSEM)

0.00

0.15

0.50

1.00

OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL

R
el

at
iv

e
Li

ne
s

of
 C

od
e

CPU code GPU code

Figure 4.23: Relative lines of code for five application examples discussed in
this chapter comparing OpenCL code with SkelCL code.

mandelbrot linear algebra
(dot product)

matrix
multiplication

image processing
(gaussian blur)

medical imaging
(LM OSEM)

physics simulation
(FDTD)

0.0

0.5

1.0

1.5

2.0

OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL OpenCL SkelCL

R
el

at
iv

e
R

un
tim

e

Figure 4.24: Relative runtime for six application examples discussed in
this chapter comparing OpenCL-based implementations with
SkelCL-based implementations.

the right). We scaled all graphs relative to the lines of code required by
the OpenCL implementation. The SkelCL code is significant shorter in
all cases, requiring less than 50% of the lines of code of the OpenCL-
based implementation. For the linear algebra application, matrix mul-
tiplication, and image processing application even less than 15% of
lines of code are required when using SkelCL.

Figure 4.24 shows the runtime results for six of the application
examples presented in this chapter. We compare the runtime of op-
timized OpenCL implementations against SkelCL-based implementa-
tions. For all shown application examples – except the dot product
application – we can see that SkelCL is close to the performance of
the OpenCL implementations. For most applications the runtime of
the SkelCL-based implementations are within 10% of the OpenCL im-
plementations. For the matrix multiplication SkelCL is 33% slower
than the optimized OpenCL implementation which only operates on
squared matrices. The dot product application is significantly slower,
as SkelCL generates two separate OpenCL kernels instead of a single
optimized kernel.

114 application studies

4.9 conclusion

In this chapter we have thoroughly evaluated the SkelCL program-
ming model and its C++ library implementation. We have seen
that SkelCL successfully addresses the programmability challenge
and indeed greatly simplifies GPU programming as compared to
OpenCL. For all investigated benchmarks we could see a reduction
in the amount of code written by the programmer of up to 9 times
for some benchmarks. The performance results show that SkelCL
is able to achieve runtime performance on par with native written
OpenCL code for most benchmarks. For two benchmarks, asum and
dot product, SkelCL performs bad compared to native written code
as unnecessarily multiple OpenCL kernels are generated and exe-
cuted. We will present a compilation technique which addresses this
performance drawback in Part III of this thesis.

For the stencil skeleton we saw, that the two presented implementa-
tions have slightly different performance characteristics. Their overall
performance is comparable to native written stencil code.

For the allpairs skeleton we saw, that the specialized implementa-
tion taking advantage of the regular zip-reduce patterns offers large
performance benefits as compared to the generic implementation. For
matrix multiplication the specialized implementation performs close
to an optimized OpenCL implementation, but still about 30% slower
than the highly optimized BLAS implementations.

In the next part of the thesis we introduce a novel compilation tech-
nique which addresses the performance portability challenge of gen-
erating high performing code from a single high-level presentation.

Part III

A N O V E L C O D E
G E N E R AT I O N A P P R O A C H

O F F E R I N G P E R F O R M A N C E
P O RTA B I L I T Y

5C O D E G E N E R AT I O N U S I N G PAT T E R N S

In the previous two chapters we discussed how regular parallel
patterns, referred to as algorithmic skeletons, help to simplify pro-
gramming of modern parallel systems. Parallel programming of

multi-GPU systems is considerably simplified without sacrificing per-
formance as shown by the evaluation in Chapter 4.

In this chapter, we address the second main challenge identified in
Chapter 1: Performance portability. We will present a novel approach
for generating efficient and hardware-specific code from composi-
tions of high-level patterns. This approach is based on a system of
rewrite-rules providing performance portability across different types
of modern parallel processors. In the following Chapter 6 we will use
a set of example applications to show that our approach generates
code matching the performance of highly tuned implementations on
CPUs and GPUs.

We will start this chapter by looking at optimizations in OpenCL
and how applying them changes the source code of applications.
We will show that these optimizations are often hardware-specific
thus breaking performance portability: optimizations for one partic-
ular hardware architecture can lead to poor performance on other
hardware architectures. This will motivate the necessity, when aiming
for performance portability, for generating optimized and specialized
code from a pattern-based high-level representation. We will discuss
the performance benefits this code generation approach offers over a
library-based approach like SkelCL presented in Chapter 3. Then we
will give an overview of our approach and present it in more detail
in the following sections. Chapter 6 will present an evaluation of the
approach using a set of application studies.

117

118 code generation using patterns

5.1 a case study of opencl optimizations

To understand the problems of performance and portability in the
context of modern parallel processors, we will study a simple appli-
cation example: parallel reduction. This discussion is based on the
presentation “Optimizing Parallel Reduction in CUDA” by Harris [82]
where optimizations for implementing the parallel reduction using
CUDA and targeting Nvidia GPUs are presented. Optimization guide-
lines like this exist from almost every hardware vendor, including
AMD [10], Intel [1, 126], and Nvidia [44], giving developers advice
on how to most efficiently exploit their hardware.

In Chapter 3 we saw that we can express a parallel reduction using
a single algorithmic skeleton: reduce. Here we look at how efficient
OpenCL implementations of this algorithm look like. More precisely
we will investigate the parallel summation of an array as a concrete
example of the generic reduce algorithm. We are especially interested
in gradually optimizing this application to see how beneficial the sin-
gle optimization steps are and how they change the source code.

We will first start by looking at the implementation and optimiza-
tions on one particular hardware architecture, using a Nvidia GPU
as our example. Then we will see how the optimized implementa-
tions perform on an AMD GPU and Intel CPU, to evaluate their per-
formance portability. Finally, we will use our observations to moti-
vate the need for a pattern-based code generator for achieving perfor-
mance portability.

5.1.1 Optimizing Parallel Reduction for Nvidia GPUs

For implementing the parallel summation of an array in OpenCL usu-
ally an approach with two OpenCL kernels is used. We start with the
elements to be reduced in the leaves at the top of the reduction tree
shown in Figure 5.1. The first OpenCL kernel is executed in parallel
by multiple OpenCL work-groups, four work-groups in the example
shown in Figure 5.1. Each work-group produces a temporary result,
then the second OpenCL kernel is executed by a single OpenCL work-
group producing the final result. This strategy is applied as synchro-
nization across work-groups is prohibited inside a single OpenCL ker-
nel, but the parallel tree-based reduction requires synchronization at
each level of the reduction tree (indicated by the bold lines in Fig-
ure 5.1). An implementation with a single OpenCL kernel would,
therefore, be restricted to launch a single OpenCL work-group and,
thus, limit the exploited parallelism.

By using the two-kernel approach, massive parallelism can be ex-
ploited in the first phase as multiple work-groups operate concur-
rently on independent parts of the input array. The second kernel
is launched with a single work-group using synchronization inside

5.1 a case study of opencl optimizations 119

First OpenCL Kernel

Second OpenCL Kernel

Figure 5.1: The first OpenCL kernel is executed by four work-groups in
parallel: work-group 0, work-group 1, work-group 2,

work-group 3. The second OpenCL kernel is only executed
by the first work-group. The bold lines indicate synchronization
points in the algorithm.

the work-group to compute the final result. The vast majority of the
work is done in the first phase and the input size to the second phase
is comparably small, therefore, the limited exploitation of parallelism
in the second phase does not effect overall performance much. For
this reason we will discuss and show only the differences and opti-
mizations in the first OpenCL kernel.

We will follow the methodology established in [82] and evaluate
the performance of the different versions using the measured GPU
memory bandwidth as our metric. The memory bandwidth is com-
puted by measuring the runtime in seconds and dividing it by the
input data size which is measured in gigabytes. As we use the same
input data size for all experiments, the bandwidth results shown in
this section directly correspond to the inverse of the measured run-
time. By investigating the memory bandwidth of the GPU memory,
we can see which fraction of the maximum memory bandwidth avail-
able has been utilized. Using the memory bandwidth as evaluation
metric for the parallel reduction is reasonable as the reduction has a
very low arithmetic intensity and its performance is, therefore, bound
by the available GPU memory bandwidth.

All following implementations are provided by Nvidia as part of
their software development kit and presented in [82]. These imple-
mentations have originally been developed for Nvidia’s Tesla GPU
architecture [109] and not been updated by Nvidia for more recent
GPU architectures. Nevertheless, the optimizations discussed are still
beneficial on more modern Nvidia GPUs– as we will see. All perfor-
mance numbers in this section have been measured on a Nvidia GTX
480 GPU featuring the Nvidia Fermi architecture [157].

120 code generation using patterns

1 kernel
2 void reduce0(global float* g_idata, global float* g_odata,
3 unsigned int n, local float* l_data) {
4 unsigned int tid = get_local_id(0);
5 unsigned int i = get_global_id(0);
6 l_data[tid] = (i < n) ? g_idata[i] : 0;
7 barrier(CLK_LOCAL_MEM_FENCE);
8 // do reduction in local memory
9 for(unsigned int s=1; s < get_local_size(0); s *= 2) {

10 if ((tid % (2*s)) == 0) {
11 l_data[tid] += l_data[tid + s]; }
12 barrier(CLK_LOCAL_MEM_FENCE); }
13 // write result for this work-group to global memory
14 if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Listing 5.1: First OpenCL implementation of the parallel reduction
achieving 6.64% of the memory bandwith limit.

first opencl implementation Listing 5.1 shows the first ver-
sion of the parallel reduction in OpenCL. First each work-item loads
an element into the local memory (line 6). After a synchronization
(line 7) all work-items of a work-group execute a for loop (line 9—
line 12) to perform a collective tree-based reduction. In every iter-
ation the if statement (line 10) ensures that a declining number of
work-items remain active performing partial reductions in the shrink-
ing reduction tree. The second barrier in line 12 ensures that no race
conditions occur when accessing the shared local memory. Finally, the
work-item in the work-group with id = 0 writes back the computed
result to the global memory in line 14.

The implementation presented in Listing 5.1 is not straightforward
to develop. The application developer has to be familiar with the par-
allel execution model of OpenCL to avoid race conditions and dead-
locks. For example, it is important that the second barrier in line 12 is
placed after and not inside the if statement. This is true, even though
work-items not entering the if statement will never read from or write
to memory and, therefore, can never be influenced by a race condi-
tion. Nevertheless, OpenCL requires all work-items of a work-group
to execute all barrier statements in a kernel exactly the same number
of times. The application developer is responsible to ensure that this
condition is met, otherwise a deadlock will occur.

Despite being difficult to program, this implementation does not
provide high performance either. Only 6.64% (11.78 GB/s) of the avail-
able bandwidth is utilized on the GTX 480.

5.1 a case study of opencl optimizations 121

1 kernel
2 void reduce1(global float* g_idata, global float* g_odata,
3 unsigned int n, local float* l_data) {
4 unsigned int tid = get_local_id(0);
5 unsigned int i = get_global_id(0);
6 l_data[tid] = (i < n) ? g_idata[i] : 0;
7 barrier(CLK_LOCAL_MEM_FENCE);
8

9 for(unsigned int s=1; s < get_local_size(0); s *= 2) {
10 // continuous work-items remain active
11 int index = 2 * s * tid;
12 if (index < get_local_size(0)) {
13 l_data[index] += l_data[index + s]; }
14 barrier(CLK_LOCAL_MEM_FENCE); }
15

16 if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Listing 5.2: OpenCL implementation of the parallel reduction avoiding
divergent branching. This implementation utilizes 9.73% of the
memory bandwidth limit.

avoid divergent branching Listing 5.2 shows the second im-
plementation. The differences from the previous implementation are
highlighted in the code.

When performing the collective tree-based reduction in a work-
group, a shrinking number of work-items remain active until the last
remaining work-item computes the result of the entire work-group.
In the previous version the modulo operator was used to determine
which work-item remains active (see line 10 in Listing 5.1). This leads
to a situation were not the consecutive work-items remain active, but
rather work-items which id is divisible by 2, then by 4, then by 8, and
so on. In Nvidia’s GPU architectures, 32 work-items are grouped into
a warp and executed together, as described in Chapter 2. It is highly
beneficial to program in a style where all 32 work-items grouped into
a warp perform the same instructions to avoid divergent branching
between work-items of a warp. Using the modulo operator to deter-
mine the active work-items leads to highly divergent branching. The
second implementation in Listing 5.2, therefore, uses a different for-
mula (line 11) for determining the active work-items, which avoids
divergent branching.

The runtime performance improves by a factor of 1.47 as compared
to the first implementation. However, still only 9.73% (17.26 GB/s)
of the theoretically available memory bandwidth are used by this
version.

122 code generation using patterns

1 kernel
2 void reduce2(global float* g_idata, global float* g_odata,
3 unsigned int n, local float* l_data) {
4 unsigned int tid = get_local_id(0);
5 unsigned int i = get_global_id(0);
6 l_data[tid] = (i < n) ? g_idata[i] : 0;
7 barrier(CLK_LOCAL_MEM_FENCE);
8

9 // process elements in different order
10 // requires commutativity!
11 for(unsigned int s=get_local_size(0)/2; s>0; s>>=1) {
12 if (tid < s) {
13 l_data[tid] += l_data[tid + s]; }
14 barrier(CLK_LOCAL_MEM_FENCE); }
15

16 if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Listing 5.3: OpenCL implementation of the parallel reduction avoiding local
memory bank conflicts. This implementation utilizes 12.61% of
the memory bandwidth limit.

avoid interleaved addressing Listing 5.3 shows the third
implementation. The differences from the previous implementation
are highlighted in the code.

On modern GPUs the fast local memory is organized in multiple
banks. When two, or more, work-items simultaneously access memory
locations in the same bank a bank conflict occurs which means that
all memory requests are processed sequentially and not in parallel
as usual. The previous two implementations use an access pattern
for the local memory which makes bank conflicts likely. The third
implementation in Listing 5.3 avoids this problematic local memory
access pattern. Instead an access pattern is used where bank conflicts
are unlikely and, thus, performance is improved. This better access
pattern requires the reduction operation to be commutative, as the
order of element is not respected when reading from local memory.

The performance improves by a factor of 1.30 as compared to the
previous implementation and 1.90 to the initial implementation. With
this version 12.61% (22.37 GB/s) of the theoretically available memory
bandwidth are used.

5.1 a case study of opencl optimizations 123

1 kernel
2 void reduce3(global float* g_idata, global float* g_odata,
3 unsigned int n, local float* l_data) {
4 unsigned int tid = get_local_id(0);
5 unsigned int i = get_group_id(0) * (get_local_size(0)*2)
6 + get_local_id(0);
7 l_data[tid] = (i < n) ? g_idata[i] : 0;
8 // performs first addition during loading
9 if (i + get_local_size(0) < n)

10 l_data[tid] += g_idata[i+get_local_size(0)];
11 barrier(CLK_LOCAL_MEM_FENCE);
12

13 for(unsigned int s=get_local_size(0)/2; s>0; s>>=1) {
14 if (tid < s) {
15 l_data[tid] += l_data[tid + s]; }
16 barrier(CLK_LOCAL_MEM_FENCE); }
17

18 if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Listing 5.4: OpenCL implementation of the parallel reduction. Each work-
item performs an addition when loading data from global
memory. This implementation utilizes 23.71% of the memory
bandwidth limit.

increase computational intensity per work-item List-
ing 5.4 shows the fourth implementation. The differences from the
previous implementation are highlighted in the code.

In the previous versions, each work-item loads one element from
the global into the local memory before the work-items of the work-
group collectively perform a tree-based reduction. That means that
half of the work-items are idle after performing a single copy oper-
ation, which is highly wasteful. The fourth implementation in List-
ing 5.4 avoids this by having each work-item load two elements from
global memory, perform an addition, and store the computed result
in local memory (line 10). Assuming the same input size this reduces
the number of work-items to start with by half and, therefore, in-
creases the computational intensity for every work-item.

The performance improves by a factor of 1.88 as compared to the
previous implementation and 3.57 to the initial implementation. With
this version, 23.71% (42.06 GB/s) of the theoretically available mem-
ory bandwidth is used.

124 code generation using patterns

avoid synchronization inside a warp Listing 5.5 shows the
fifth implementation. The differences from the previous implementa-
tion are highlighted in the code.

Wraps are the fundamental execution unit in Nvidia’s GPU archi-
tectures, as explained in Chapter 2: All work-items grouped in a warp
are guaranteed to be executed together in a lock-step manner, i. e., all
work-items in the same warp execute the same instruction simultane-
ously. Because of this hardware behaviour, no barrier synchronization
is required between instructions inside a single warp. The fifth imple-
mentation in Listing 5.5 takes advantage of this. The for loop perform-
ing the tree-based reduction is exited early at the stage when only 32

work-items remain active (see line 14). The extra code in line 22 up to
line 28 performs the rest of the tree-base reduction without any bar-
rier synchronization. The code shown here effectively unrolled the
last six iterations of the for loop in line 14. As warps are specific to
Nvidia’s GPU architectures, this implementation is not portable and
might produce incorrect results on other OpenCL devices.

The performance improves by a factor of 1.37 as compared to the
previous implementation and 4.91 to the initial implementation. With
this version, 32.59% (57.81 GB/s) of the theoretically available mem-
ory bandwidth is used.

complete loop unrolling Listing 5.6 on page 126 shows the
sixth implementation. The differences from the previous implementa-
tion are highlighted in the code.

In the previous implementation we made a special case for the
last six iterations of the for loop and provided special code handling
for each iteration separately. This is a general optimization strategy
known as loop unrolling. Loop unrolling can be beneficial because vari-
ables and branches required by a loop can be avoided. Furthermore,
instruction level parallelism can be increased. In the sixth implemen-
tation, shown in Listing 5.6, the for loop has been removed entirely
and replaced by three if statement (line 13, line 16, and line 19). Each
if statement replaces one iteration of the loop. This code assumes
that WG_SIZE is a compile-time constant and, therefore, the if state-
ments will be evaluated at compile time, avoiding costly branches at
runtime. Different to the previous optimization (Listing 5.5), we still
have to provide a barrier to ensure correct synchronization, as multi-
ple warps are involved here.

The performance improves by a factor of 1.13 as compared to the
previous implementation and 5.54 times as compared to the initial
implementation. With this version, 36.77% (65.23 GB/s) of the theo-
retically available memory bandwidth are used.

5.1 a case study of opencl optimizations 125

1 kernel
2 void reduce4(global float* g_idata, global float* g_odata,
3 unsigned int n,local volatile float* l_data){
4 unsigned int tid = get_local_id(0);
5 unsigned int i = get_group_id(0) * (get_local_size(0)*2)
6 + get_local_id(0);
7 l_data[tid] = (i < n) ? g_idata[i] : 0;
8 if (i + get_local_size(0) < n)
9 l_data[tid] += g_idata[i+get_local_size(0)];

10 barrier(CLK_LOCAL_MEM_FENCE);
11

12 // prevent further unrolling (see next version)
13 #pragma unroll 1
14 for(unsigned int s=get_local_size(0)/2; s>32; s>>=1) {
15 if (tid < s) {
16 l_data[tid] += l_data[tid + s]; }
17 barrier(CLK_LOCAL_MEM_FENCE); }
18

19 // unroll for last 32 active work-items
20 // no synchronization required on Nvidia GPUs
21 // this is not protable OpenCL code!
22 if (tid < 32) {
23 if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; }
24 if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; }
25 if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; }
26 if (WG_SIZE >= 8) { l_data[tid] += l_data[tid+ 4]; }
27 if (WG_SIZE >= 4) { l_data[tid] += l_data[tid+ 2]; }
28 if (WG_SIZE >= 2) { l_data[tid] += l_data[tid+ 1]; } }
29

30 if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Listing 5.5: OpenCL implementation of the parallel reduction.
Synchronization inside a warp is avoided by unrolling the loop
for the last 32 work-items. This implementation utilizes 32.59%
of the memory bandwidth limit.

126 code generation using patterns

1 kernel
2 void reduce5(global float* g_idata, global float* g_odata,
3 unsigned int n,local volatile float* l_data){
4 unsigned int tid = get_local_id(0);
5 unsigned int i = get_group_id(0) * (get_local_size(0)*2)
6 + get_local_id(0);
7 l_data[tid] = (i < n) ? g_idata[i] : 0;
8 if (i + get_local_size(0) < n)
9 l_data[tid] += g_idata[i+get_local_size(0)];

10 barrier(CLK_LOCAL_MEM_FENCE);
11

12 // unroll for loop entirely
13 if (WG_SIZE >= 512) {
14 if (tid < 256) { l_data[tid] += l_data[tid+256]; }
15 barrier(CLK_LOCAL_MEM_FENCE); }
16 if (WG_SIZE >= 256) {
17 if (tid < 128) { l_data[tid] += l_data[tid+128]; }
18 barrier(CLK_LOCAL_MEM_FENCE); }
19 if (WG_SIZE >= 128) {
20 if (tid < 64) { l_data[tid] += l_data[tid+ 64]; }
21 barrier(CLK_LOCAL_MEM_FENCE); }
22

23 if (tid < 32) {
24 if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; }
25 if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; }
26 if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; }
27 if (WG_SIZE >= 8) { l_data[tid] += l_data[tid+ 4]; }
28 if (WG_SIZE >= 4) { l_data[tid] += l_data[tid+ 2]; }
29 if (WG_SIZE >= 2) { l_data[tid] += l_data[tid+ 1]; } }
30

31 if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Listing 5.6: OpenCL implementation of the parallel reduction with a
completly unrolled loop. This implementation utilizes 36.77% of
the memory bandwidth limit.

5.1 a case study of opencl optimizations 127

fully optimized implementation Listing 5.7 on page 128

shows the final and fully optimized implementation. The differences
from the previous implementation are highlighted in the code.

One of the optimizations applied earlier was to increase the compu-
tational intensity for each single work-item by performing two loads
and an addition instead of a single load. This final version applies the
same idea, but performing multiple additions per work-item before
the collective tree-based reduction in the entire work-group. This has
indeed two advantages: first, the algorithmic intensity is increased,
i. e., each work-item is doing more work, and, second, performing the
summation sequentially by a single work-item does not require costly
synchronizations. The fully optimized implementation is shown in
Listing 5.7 with the changes highlighted. A while loop has been intro-
duced (see line 11) which, in every iteration, loads two elements from
the global memory and adds them to the local memory. No synchro-
nization is required here as each work-item operates independently
on different memory locations. The way the memory is accessed en-
sures that memory accesses will be coalesced (see Chapter 2) when
reading from global memory.

The performance improves by a factor of 1.78 as compared to the
previous implementation and 9.85 times as compared to the initial
implementation. With this version, 65.44% (116.09 GB/s) of the theo-
retically available memory bandwidth are used.

conclusions We can draw several valuable conclusions from
studying these OpenCL source codes.

The first main conclusion is, that implementing these optimizations
is not intuitive and straightforward. It requires experience as well
as knowledge and reasoning about the target hardware architecture,
in this case the Fermi GPU architecture: Listing 5.2 requires the un-
derstanding of the problem of branch divergence, Listing 5.3 requires
knowledge about the organization of local memory and bank conflicts,
Listing 5.4 and Listing 5.7 require reasoning about the computational
intensity of work-items, Listing 5.5 requires understanding of warps
and their execution by the hardware, Listing 5.6 requires experience
with loop unrolling techniques, and, finally, Listing 5.7 required knowl-
edge about the organization of global memory and memory coalescing.
These are additional burdens for the application developer on top of
implementing a functionally correct version where the programmer
is facing widely recognized correctness problems of parallel program-
ming like race conditions and deadlocks.

Furthermore, the source code changes necessary for individual op-
timization steps are not obvious either. The source code of the first
implementation in Listing 5.1 is very different as compared to the fi-
nal implementation shown in Listing 5.7. For example, the code size
has more then doubled (from 16 to 35 lines of code) and many state-

128 code generation using patterns

1 kernel
2 void reduce6(global float* g_idata, global float* g_odata,
3 unsigned int n,local volatile float* l_data){
4 unsigned int tid = get_local_id(0);
5 unsigned int i = get_group_id(0) * (get_local_size(0)*2)
6 + get_local_id(0);
7 unsigned int gridSize = WG_SIZE*2*get_num_groups(0);
8 l_data[tid] = 0;
9

10 // multiple elements are reduced per work-item
11 while (i < n) { l_data[tid] += g_idata[i];
12 if (i + WG_SIZE < n)
13 l_data[tid] += g_idata[i+WG_SIZE];
14 i += gridSize; }
15 barrier(CLK_LOCAL_MEM_FENCE);
16

17 if (WG_SIZE >= 512) {
18 if (tid < 256) { l_data[tid] += l_data[tid+256]; }
19 barrier(CLK_LOCAL_MEM_FENCE); }
20 if (WG_SIZE >= 256) {
21 if (tid < 128) { l_data[tid] += l_data[tid+128]; }
22 barrier(CLK_LOCAL_MEM_FENCE); }
23 if (WG_SIZE >= 128) {
24 if (tid < 64) { l_data[tid] += l_data[tid+ 64]; }
25 barrier(CLK_LOCAL_MEM_FENCE); }
26

27 if (tid < 32) {
28 if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; }
29 if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; }
30 if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; }
31 if (WG_SIZE >= 8) { l_data[tid] += l_data[tid+ 4]; }
32 if (WG_SIZE >= 4) { l_data[tid] += l_data[tid+ 2]; }
33 if (WG_SIZE >= 2) { l_data[tid] += l_data[tid+ 1]; } }
34

35 if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

Listing 5.7: Fully optimized OpenCL implementation of the parallel
reduction. This implementation utilizes 65.44% of the memory
bandwidth limit.

5.1 a case study of opencl optimizations 129

ments have been added or replaced by others. It is not obvious, nei-
ther to a human being nor to an optimizing compiler, that these two
pieces of code have the same semantics (assuming an associative and
commutative binary reduction operator, like +).

The second main conclusion we can draw is, that performing these
optimizations on modern parallel architectures is highly beneficial.
The first unoptimized version did only utilize about 6.64% of the
available memory bandwidth, while the fully optimized version uti-
lizes a more reasonable 65.44% on our GeForce GTX 480. Applying all
optimizations improved the performance by a factor of ≈10 while uti-
lizing the exactly same hardware. For an input array of size of 256 MB
the runtime reduces from 95.7 ms to 9.1 ms when using the optimized
kernel over the unoptimized one. Harris [82] reports an even higher
improvement factor of ≈30 for the GeForce 8800 GTX used in his
experiments. Modern parallel processors are often chosen as target
architecture because of their high theoretical performance. Turning
the theoretical performance into practical performance by applying
such optimizations is, therefore, essential for most users.

5.1.2 Portability of the Optimized Parallel Reduction

After we have established how crucial but hard to achieve optimiza-
tions are, we now will investigate their portability. To do so, we
did run the code shown in Listing 5.1–Listing 5.7 on three different
hardware devices: Nvidia’s GTX 480 (Fermi GPU architecture [157])
which we have used in our analysis in the previous section, AMD’s
Radeon HD7970 (Graphics Core Next GPU architecture [155]), and In-
tel’s E5530 CPU (Nehalem CPU architecture [156]). Figure 5.2 shows
the performance numbers for each device. We use, as before, the mem-
ory bandwidth as our metric and show the hardware memory band-
width limit of each respective hardware architecture at the top. As a
practical comparison we also show bandwidth numbers for the par-
allel reduction using highly tuned, architecture specific implemen-
tations of the BLAS library. We use the CUBLAS library [43] for the
Nvidia GPU, the clBLAS library [150] for the AMD GPU, and the MKL
library [93] for the Intel CPU. Each library is implemented and pro-
vided by the corresponding hardware vendor.

portability of optimizations The results show that the op-
timizations discussed in the previous section are not portable. On
each architecture a different version of the optimized implementa-
tions performs best: Implementation 7 (shown in Listing 5.7) on the
Nvidia GPU, Implementation 6 (shown in Listing 5.6) on the AMD
GPU, and Implementation 4 (shown in Listing 5.4) on the Intel CPU.
Some implementations actually produce incorrect results on the Intel
CPU due to the warp-specific optimization introduced in Implementa-

130 code generation using patterns

Hardware Bandwidth Limit

0

50

100

150

200

Im
pl.

 1

Im
pl.

 2

Im
pl.

 3

Im
pl.

 4

Im
pl.

 5

Im
pl.

 6

Im
pl.

 7

cu
BLA

S

B
an

dw
id

th
 (

G
B

/s
)

(a) Nvidia’s GTX 480 GPU.

Hardware Bandwidth Limit

0

100

200

300

Im
pl.

 1

Im
pl.

 2

Im
pl.

 3

Im
pl.

 4

Im
pl.

 5

Im
pl.

 6

Im
pl.

 7

clB
LA

S

B
an

dw
id

th
 (

G
B

/s
)

(b) AMD’s HD 7970 GPU.

Hardware Bandwidth Limit

Failed Failed Failed
0

10

20

30

Im
pl.

 1

Im
pl.

 2

Im
pl.

 3

Im
pl.

 4

Im
pl.

 5

Im
pl.

 6

Im
pl.

 7
M

KL

B
an

dw
id

th
 (

G
B

/s
)

(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reduction

5.1 a case study of opencl optimizations 131

tion 5 (shown in Listing 5.5). Interestingly, this optimization happens
to be valid on AMD’s GPU architecture as well, as there exists a simi-
lar concept to warps called wavefronts [155].

portability of relative performance Relative performance
refers to the performance of an implementation relative to the best
theoretical performance possible or best existing implementation on
a given hardware architecture. The theoretical performance of an ar-
chitecture is given by its hardware limitations, like the number of
arithmetic logical units, the width of the memory bus, or the maxi-
mum clock frequency. Practical issues like work load and utilization
or the cache miss rate are ignored. Possible metrics for measuring
the theoretical performance are number of floating point operation in
GFLOP/s or the memory bandwidth in GB/s.

The best practical performance is given by the best implementation
available for a particular hardware platform. It is not always possible
to determine which implementation is the best. Here we consider
the BLAS library implementations tuned by the respective hardware
vendors as the best available.

By investigating relative performance we can compare the conse-
quences of applying optimizations across different hardware archi-
tectures. The relative performance shown in Figure 5.2 differs widely
across architectures.

On the Nvidia GPU, the best optimized implementation achieves
83.3% of the performance of the vendor-provided CUBLAS implemen-
tation utilizing 65.4% of the theoretical memory bandwidth limit.

On the AMD GPU, the gap between the manual and library imple-
mentation is much larger: the manually optimized implementation
achieves only 41.3% of the clBLAS library implementation. Only 32.4%
of the theoretical memory bandwidth limit is achieved.

On the Intel CPU, implementation 4 achieves only 16.6% of the MKL
performance. That means, that MKL is over 5 times faster than the best
of the discussed implementations. The hardware bandwidth limit is
only utilized to 8.6%. Interestingly, the MKL implementation also only
provides 43.8% of the maximum memory bandwidth. This is due to
the combination of the implementation of the parallel reduction in
MKL and the particular machine used in this experiment. The test
machine used is configured as a dual-socket machine, i. e., two E5530

CPUs each with their own memory controller are available. Therefore,
the hardware bandwidth available is doubled as compared to a single
E5530 CPU. While the implementation of the parallel reduction in the
MKL library is optimized using vector instructions, it does not exploit
thread-level parallelism. Therefore, the second E5530 CPU can not be
used by the implementation, thus, limiting the available bandwidth
by half.

132 code generation using patterns

conclusions Studying the performance of the optimizations pre-
sented by Harris [82] on different hardware architectures gained some
interesting insides. First, optimizations are not portable across hard-
ware architectures and can even result in incorrect programs on some
architectures. Second, the relative performance achieved with opti-
mizations on one architecture is not always achieved on other hard-
ware architectures as well. This let us conclude that performance is
not portable when using OpenCL or similar low-level approaches.

As a positive result we can see from Figure 5.2 that there exist im-
plementations on the other hardware architectures which offer similar
relative performance as the most optimized implementation on the
Nvidia GPU. For the AMD GPU, the clBLAS implementation achieves
78.5% of the hardware bandwidth limit and Intel’s MKL implementa-
tion achieves 87.6% of the hardware limit, considering just the band-
width of a single CPU socket.

We aim at developing an approach which can systematically apply
optimizations and generate code matching the performance on all
three architectures, thus, offering performance portability.

5.1.3 The Need for a Pattern-Based Code Generator

Our main goal in this chapter is to develop a systematic approach
to achieve performance portability, i. e., to achieve high relative perfor-
mance for a given application across a set of different parallel proces-
sors. As we saw in the previous section, traditional approaches, like
OpenCL, are not performance portable. Currently, programmers of-
ten tune their implementations towards a particular hardware using
hardware-specific optimizations to achieve the highest performance
possible. For example, in Listing 5.5 the Nvidia specific execution be-
havior of grouping work-items in warps is exploited. This reduces
portability, maintainability, and clarity of the code: multiple versions
have to be maintained, and non-obvious optimizations make the code
hard to understand and to reason about.

We argue that parallel patterns can help overcome the tension be-
tween achieving the highest possible performance and preserving
code portability and maintainability. Parallel patterns declaratively
specify the desired algorithmic behavior, rather than encode a partic-
ular implementation which might offer suboptimal performance on
some hardware architectures. A parallel pattern can be implemented
in different ways, optimized towards particular hardware architec-
tures. If the underlying hardware is changed, the optimal implemen-
tation for the new hardware can be chosen.

While a compelling idea in theory, existing approaches have fallen
short of providing and selecting highly optimized implementations
on different architectures. Previous work has been limited to ad-hoc

5.1 a case study of opencl optimizations 133

solutions for specific hardware architectures. This limitation has three
main reasons:

First, providing optimized implementations of a pattern on every
new hardware platform is a challenging task. Nowadays, dozens of
parallel architectures and hundreds of variations of them exist and
new architectures are released every year. Therefore, it is often not
feasible to provide optimized implementations for all available hard-
ware architectures and existing library approaches have focused on
particular hardware architectures. For example, Nvidia GPUs have
been the main target for the SkelCL library and, therefore, the skele-
ton implementations have been optimized appropriately. The stencil
skeleton implementation, for example, makes heavy use of the local
memory feature of OpenCL which is usually not beneficial to be used
on a CPU, as CPUs do not feature the corresponding memory area in
hardware. An approach using code generation could overcome this
drawback, because instead of fixed implementations collected in a li-
brary rather possible optimizations are systematically described and
then automatically applied by the code generator.

Second, most existing approaches are library-based, which makes
the optimization of composition and nesting of patterns extremely
complex. In SkelCL, for example, each pattern is implemented as a
separate OpenCL kernel. When composing patterns, multiple kernels
are executed, but often a better solution would be to fuse multiple
kernels into a single kernel, thus avoiding costly operations to write
and read the intermediate result into/from the global memory. As fu-
sion of OpenCL kernels in general is complicated and requires code
analysis, SkelCL currently cannot execute a fused, and, thus, fully
optimized, implementation of composed patterns. Our envisaged ap-
proach using code generation should overcome this issue, as the code
generator processes the entire pattern-based expression instead of fo-
cusing on individual patterns.

Finally, the optimal implementation of a parallel pattern usually de-
pends very much on the application and context the pattern is used in.
For example, the algorithmic skeleton reduce can be used on its own
to implement a parallel summation, as discussed in Section 5.1, but it
can also be used as part of the dot product computation which itself
is a building block of matrix multiplication, as we saw in Chapter 3.
The optimal implementation of reduce will most certainly differ across
these use cases. Indeed, for the parallel summation the entire paral-
lel processor should be exploited using many OpenCL work-items si-
multaneously, while as part of the matrix multiplication reduce should
possibly only exploit thread level parallelism to a limited degree – if
at all. An approach using code generation could overcome this issue,
as specialized code can be generated for patterns in different contexts
instead of providing a single fixed implementation.

134 code generation using patterns

High-level Expression

OpenCL Program

OpenCL Patterns

Algorithmic Patterns

Low-level Expression

Algorithmic choices &
Hardware optimizations

map

reduce

iterate

split

join

vectorize toLocal

map-local

map-workgroup

vector units

workgroups

local memory

barriers

...Dot product Vector reduction

Hardware Paradigms

Code generation

High-level
programming

reorder...

...

...

Exploration with
rewriting rules

BlackScholes

Figure 5.3: Overview of our code generation approach. Problems expressed
with high-level algorithmic patterns are systematically trans-
formed into low-level OpenCL patterns using a rule rewriting
system. OpenCL code is generated by mapping the low-level pat-
terns directly to the OpenCL programming model representing
hardware paradigms.

We argue that the root of the problem lies in a gap in the system
stack between the high-level algorithmic patterns on the one hand
and low-level hardware optimizations on the other hand. We propose
to bridge this gap using a novel pattern-based code generation tech-
nique. A set of rewrite rules systematically translates high-level algo-
rithmic patterns into low-level hardware patterns. The rewrite rules
express different algorithmic and optimization choices. By systemati-
cally applying the rewrite rules semantically equivalent, low-level ex-
pressions are derived from high-level algorithm expressions written
by the application developer. Once derived, high-performance code
based on these expressions can be automatically generated. The next
section introduces an overview of our approach.

5.2 overview of our code generation approach

The overview of our pattern-based code generation approach is pre-
sented in Figure 5.3. The programmer writes a high-level expression
composed of algorithmic patterns. Using a rewrite rule system, we
transform this high-level expression into a low-level expression consist-
ing of OpenCL patterns. At this rewrite stage, algorithmic and opti-
mization choices in the high-level expression are explored. The gen-
erated low-level expression is then fed into our code generator that
emits an OpenCL program which is, finally, compiled to machine code

5.2 overview of our code generation approach 135

by the vendor-provided OpenCL compiler. A major advantage of our
approach is that there is no analysis or optimizations performed in
the code generator: optimization decisions are made earlier in the rule
rewrite system. This results in a clear separation of concerns between
the high-level patterns used by the programmer and the low-level
hardware paradigms that enable performance portability.

5.2.1 Introductory Example

We illustrate the advantages of our approach using a simple vector
scaling example shown in Figure 5.4 on page 136. The user expresses
the computation by writing a high-level expression using the algorith-
mic map pattern as shown in Figure 5.4a. This coding style is similar
to functional programming as we saw with the SkelCL programming
model introduced in Chapter 3. As common in functional program-
ming, the ◦ operator represents sequential function composition.

Our technique first rewrites the high-level expression into a repre-
sentation closer to the OpenCL programming model. This is achieved
by applying rewrite rules which are presented later in Section 5.4.
Figure 5.4b shows one possible derivation of the original high-level
expression. Other derivations are possible with different optimiza-
tions applied. The particular expression shown in Figure 5.4b features
vectorization as one possible optimization technique. In the derived
low-level expression, starting from the last line, the input is split into
chunks of a fixed number of elements, 1024 in the example. Each
chunk is then mapped onto an OpenCL work-group with the map-
workgroup low-level pattern (line 2). Within a work-group (line 3—
line 5), we vectorize the elements (line 5), each mapped to a local
work-item inside a work-group via the map-local pattern (line 3). Each
local work-item now processes 4 elements, enclosed in a vector type.
Finally, the vect-4 pattern (line 4) vectorizes the user-defined function
mul3. The exact meaning of our patterns will be given in Section 5.3.

The last step consists of traversing the low-level expression and
generating OpenCL code for each low-level pattern encountered (Fig-
ure 5.4c). Each map patterns generates a for-loop (line 5—line 6 and
line 9—line 10) that iterate over the input array assigning work to the
work-groups and local work-items. The information of how many
chunks each work-group and work-items processes comes from the
corresponding split. In line 13 the vectorized version of the user-
defined mul3 function (defined in line 1) is applied to the input array.

To summarize, our approach consists of generating OpenCL code
starting from a single portable high-level program representation of
a program. This is achieved by systematically transforming the high-
level expression into a low-level form suitable for code generation.
The next three sections present our high-level and low-level patterns,
the rewrite rules, and the code generation mechanism.

136 code generation using patterns

1 mul3 x = x * 3 // user-defined function
2 vectorScal = map mul3 // map pattern

(a) High-level expression written by the programmer.

rewrite rules

1 mul3 x = x * 3
2 vectorScal = join ◦ map-workgroup (
3 asScalar ◦ map-local (
4 vect 4 mul3
5) ◦ asVector 4
6) ◦ split 1024

(b) Low-level expression derived using rewrite rules.
code generator

1 float4 mul3(float4 x) { return x * 3; }
2

3 kernel vectorScal(global float* in,
4 global float* out, int len) {
5 for (int i =get_group_id(0); i < len/1024;
6 i+=get_num_groups(0)) {
7 global float* grp_in = in+(i*1024);
8 global float* grp_out = out+(i*1024);
9 for (int j =get_local_id(0); j < 1024/4;

10 j+=get_local_size(0)) {
11 global float4* in_vec4 =(float4*)grp_in+(j*4);
12 global float4* out_vec4=(float4*)grp_out+(j*4);
13 *out_vec4 = mul3(*in_vec4);
14 } } }

(c) OpenCL program produced by our code generator.

Figure 5.4: Pseudo-code representing vector scaling. The user maps the mul3
function over the input array (a). This high-level expression is
transformed into a low-level expression (b) using rewrite rules.
Finally, our code generator turns the low-level expression into an
OpenCL program (c).

5.3 patterns : design and implementation 137

5.3 patterns : design and implementation

In this section, we will introduce the patterns which form the expres-
sions written by the programmer and used for code generation. As
we saw in the previous section there exist two type of patterns: high-
level algorithmic patterns and low-level OpenCL patterns. Some of
the high-level algorithmic patterns directly correspond to algorithmic
skeletons we have introduced in Chapter 3. As we will also introduce
patterns which we have not seen so far and which do not oblige to
the common definition of algorithmic skeletons, we will use the more
generic term pattern throughout this and the next chapter.

The key idea of our approach is to expose algorithmic choices and
hardware-specific program optimizations as rewrite rules (discussed
later in Section 5.4) which systematically transform pattern-based ex-
pressions. The high-level algorithmic patterns represent structured
parallelism. They can either be used by the programmer directly as
a stand-alone language, but could also be used as a domain specific
language embedded in a general purpose programming language, or
used as an intermediate representation targeted by the compiler of
another programming language. Once a program is represented with
our high-level patterns, we systematically transform the program into
low-level patterns. The low-level patterns represent hardware-specific
concepts expressed by a programming model such as OpenCL, which
is the target chosen for this thesis. Following the same methodology,
a different set of low-level patterns could be designed to target other
low-level programming models such as Pthreads or MPI.

5.3.1 High-level Algorithmic Patterns

We define our patterns as functions. To simplify our implementation,
we encode all types as arrays with primitives represented by arrays
of length 1. The only exceptions are the user-defined functions, such
as the mul3 function in Figure 5.4a that operates on primitive types.

Table 5.1 presents our high-level patterns used to define programs
at the algorithmic level. Most of the patterns are well known in func-
tional programming, like map and reduce. The zip, split and join pat-
terns transform the shape of the data. The iterate pattern iteratively
applies a function multiple times. Finally, the reorder pattern lets our
system know that it is safe to reorder the elements of an array arbi-
trarily, which enables additional optimizations – as we will see later
in Chapter 6.

In the following, we discuss each high-level algorithmic pattern in
more detail including their formal definitions. As in Chapter 3 we
use the Bird-Meertens formalism [18] as inspiration for our notation
of the patterns. For full details on the notation see Section 3.2.2 on
page 36. Here is a short reminder of our notation: we write function

138 code generation using patterns

Pattern Description

map Apply a given function to every element of an input
array.

reduce Perform a reduction of an input array using a user-
defined binary function and an initial value.

zip Build an array of pairs by pairwise combining two
arrays.

split Produce a multi-dimensional array by splitting an
array in chunks of a given size.

join Join the two outer most dimensions of an multi-
dimensional array.

iterate Iterate a given function over an input array a fixed
number of times.

reorder Reorder the element of the input array.

Table 5.1: High-level algorithmic patterns used by the programmer.

application using a space and functions are often curried; binary op-
erators (e. g., ⊕) are written using infix notation and can be written
using prefix notation when being sectioned by using parenthesis, i. e.,:
a ⊕ b = (⊕) a b. For an array xs of length n with elements xi we
write [x1, . . . , xn].

In this chapter we are especially interested in how patterns can be
composed and nested. As types formally specify which compositions
and nesting of patterns are legal, we will define the type of each
pattern. We write e : σ to denote that expression e has type σ. For a
function mapping values of type α to values of type β we write its
type as (α→ β). Tuple types are written as 〈α,β〉. Finally, arrays have
their length denoted as part of their type: for an array with elements
of type α and length n, we write [α]n.

A formal description of a core subset of the patterns described in
this section can also be found in our paper [143], where formal syn-
tax, typing rules, and formal semantics using a denotational style are
given.

map The map pattern is well known in functional programming
and applies a given unary function f to all elements of an input array.
In Chapter 3, we defined the map pattern as an algorithmic skeleton
(see Definition 3.1). The same definition holds here. We repeat it here
for completeness and we add the type information:

5.3 patterns : design and implementation 139

definition 5.1. Let xs be an array of size n with elements xi where 0 <
i 6 n. Let f be a unary customizing function defined on elements. The map
pattern is then defined as follows:

map f [x1, x2, . . . , xn]
def
= [f x1, f x2, . . . , f xn]

The types of f, xs, and map are as follows:

f : (α→ β),

xs : [α]n,

map f xs : [β]n.

In Chapter 3 we also defined the map skeleton for operating on ma-
trices (see Definition 3.2). In this chapter we represent matrices as
nested arrays, therefore, performing an operation on each element of
a matrix can be represented by nesting two map patterns:

mapMatrix f X = map (map f) X

Let us assume that X represents an n×m matrix with elements of
type α, then its type is

[
[α]m

]
n

. The outer map applies its customiz-
ing function to every row of matrix X. The customizing function is
defined by currying map and f, thus, producing a function which ap-
plies f to every element of its argument array. Therefore, f will be
applied to every element of matrix X.

reduce The reduce pattern (a. k. a., fold or accumulate) uses a bi-
nary operator⊕ to combine all elements of the input array. We require
the operator ⊕ to be associative and commutative which allows for
an efficient parallel implementation. By requiring commutativity, our
system can also generate vectorized implementations of the reduc-
tion and utilize the efficient coalesced memory access pattern. These
are crucial optimizations on modern GPUs as we saw in Section 5.1.
In Chapter 3 we defined reduce as an algorithmic skeleton (see Def-
inition 3.5). The same definition holds here. We repeat it here for
completeness and we add the type information:

definition 5.2. Let xs be an array of size n with elements xi where 0 <
i 6 n. Let⊕ be an associative and commutative binary customizing operator
with the identity element id⊕. The reduce pattern is then defined as follows:

reduce (⊕) id⊕ [x1, x2, . . . , xn]
def
= [x1 ⊕ x2 ⊕ · · · ⊕ xn]

140 code generation using patterns

The types of (⊕), id⊕, xs, and reduce are as follows:

(⊕) : ((α,α)→ α),

id⊕ : α,

xs : [α]n,

reduce (⊕) id⊕ xs : [α]1.

This definition is unambiguous and well-defined even without ex-
plicit parenthesis as we require the binary operator to be associative
and commutative.

zip The zip pattern and the split/join patterns transform the shape
of the data. The zip pattern fuses two arrays into a single array of
pairs.

definition 5.3. Let xs and ys be arrays of size n with elements xi and yi
where 0 < i 6 n. The zip pattern is then defined as follows:

zip [x1, x2, . . . , xn] [y1,y2, . . . ,yn]
def
= [〈x1,y1〉, 〈x2,y2〉, . . . , 〈xn,yn〉]

The types of xs, ys, and zip are as follows:

xs : [α]n,

ys : [β]n,

zip xs ys : [〈α,β〉]n.

This definition significantly differs from the definition of the zip skele-
ton in Chapter 3: While in Definition 3.3, zip applies a given func-
tion to pairs of elements, there is no function to be applied in Def-
inition 5.3 of the zip pattern. The behavior of the zip skeleton from
SkelCL can be achieved by composing the zip pattern with the map
pattern:

zipWith f xs ys = map f (zip xs ys)

split and join The split pattern, which is most often combined
with the join pattern, partitions an array into chunks of specific size,
resulting in an extra dimension in the output array.

We start with the definition of the split pattern.

definition 5.4. Let n be an integer value. Let xs be an array of sizem with
elements xi where 0 < i 6 m. Let us assume that m is evenly divisible by
n. The split pattern is then defined as follows:

split n [x1, x2, . . . , xm]
def
=[

[x1, . . . , xn], [xn+1, . . . , x2n], . . . , [xm−n+1, . . . , xm]
]

5.3 patterns : design and implementation 141

The types of n, xs, and split are as follows:

n : int,

xs : [α]m,

split n xs :
[
[α]n

]
m
n

.

The corresponding join pattern does the opposite: it reassembles an
array of arrays by merging dimensions.

definition 5.5. Let xs be an array of size mn whose elements are arrays of
size n. We denote the elements of the ith inner array as x((i−1)×n)+j where
0 < i 6 m

n and 0 < j 6 n. The join pattern is then defined as follows:

joinn
[
[x1, . . . , xn], [xn+1, . . . , x2n], . . . , [xm−n+1, . . . , xm]

] def
=

[x1, x2, . . . , xm]

The types of xs and joinn are as follows:

xs :
[
[α]n

]
m
n

,

joinn xs : [α]m.

We will almost always omit the subscript, as n can be inferred from
the length of the input array. From these definitions it follows, that
the compositions of split and join: joinn ◦ split n and split n ◦ joinn
for any value n yields the same type and also does not change any
element in the array, i. e., it is equivalent to the identify function id.

iterate The iterate pattern corresponds to the mathematical defi-
nition of iteratively applying a function, which is defined as: f0 = id

and fn+1 = fn ◦ f.

definition 5.6. Let n be an integer value with n > 0. Let f be a unary
function on arrays. Let xs be an array of arbitrary size. We define the iterate
pattern recursively:

iterate 0 f xs
def
= xs,

iterate n f xs
def
= iterate (n− 1) f (f xs)

142 code generation using patterns

The types of n, f, xs, and iterate are as follows:

n : int,

f : ([α]k → [α]F(k)), ∀k and where

F : (int→ int) describes the change

of array length when applying f,

xs : [α]m,

iterate n f xs : [α]Fn(m).

The type of the iterate pattern is interesting as its result type depends
on the effect f has on the size of its argument. The index function
F describes the effect the function f has on the length of its input
array. This index function is used to compute the effect the iterate
function has when applying f n times on its input array. Please note,
that the length of the input array of f, i. e., k, possibly changes every
time f is applied by iterate. A formal treatment of the topic using a
denotational semantics can be found in our paper [143].

reorder The reorder pattern is used to specify that the ordering
of the elements of an array does not matter.

definition 5.7. Let xs be an array of size n with elements xi where 0 <
i 6 n. Let σ be an arbitrary permutation of [1, . . . ,n]. The reorder pattern
is then defined as follows:

reorder [x1, . . . , xn]
def
= [xσ(1), . . . , xσ(n)]

The types of xs and reorder are as follows:

xs : [α]n,

reorder xs : [α]n

This definition allows to pick any permutation, i. e., a bijective func-
tion mapping values from the domain [1, . . . ,n] to the image [1, . . . ,n],
for reordering the elements of an array arbitrarily which may enable
optimizations, as we will see later.

5.3.2 Low-level, OpenCL-specific Patterns

In order to achieve the highest performance, programmers often use a
set of intuitive “rules of thumb” to optimize their applications. We ex-
tensively discussed one application example in Section 5.1. Each hard-
ware vendor provides own optimization guides [1, 10, 44, 126] that ex-
tensively cover vendor’s hardware particularities and optimizations.
The main idea behind our approach is to identify common optimiza-

5.3 patterns : design and implementation 143

Kernel

Work-Group

Work-ItemWork-Item

Warp

Work-Item

map-local

map-warp

map-lane

map-global

map-workgroup

Figure 5.5: The OpenCL thread hierarchy and the corresponding parallel
map patterns.

tions and express them systematically rather than intuitively, using
low-level patterns coupled with a rewrite-rule system.

Table 5.2 gives an overview of the OpenCL-specific patterns we
have identified.

parallel maps The different low-level OpenCL map patterns rep-
resent possible ways of mapping computations to the hardware and
exploiting thread-level parallelism in OpenCL. The execution seman-
tics and types of all these low-level OpenCL map patterns are the same
as of the high-level map pattern shown in Definition 5.1.

Figure 5.5 shows the OpenCL thread hierarchy together with the
corresponding parallel map patterns:

• The map-global pattern assigns work to work-items independent
of their work-group, as shown on the left in Figure 5.5. Follow-
ing the definition of map, each OpenCL work-item executes its
customizing function on a different part of the input array.

• The map-workgroup pattern assigns work to an OpenCL work-
group and the map-local pattern assigns work to a local work-
item inside a work-group. This is shown in the middle of Fig-
ure 5.5. The map-local pattern only makes sense in the context of
a work-group and is, therefore, only correctly used when nested
inside a map-workgroup pattern, e. g., map-workgroup (map-local f).

• There are two additional patterns which are only valid when
generating code for Nvidia GPUs: map-warp and map-lane. These
are shown on the right of Figure 5.5. These two patterns capture
the notion of warps present in Nvidia’s GPU architectures, i. e.,
32 work-items are grouped and executed together (see Chap-
ter 2 for details). Barrier synchronizations between work-items

144 code generation using patterns

Pattern Description

map-workgroup Each OpenCL work-group applies the given
function to an element of the input array.

map-local Each local work-item of a work-group applies
the given function to an element of the input ar-
ray.

map-global Each global work-item applies the given func-
tion to an element of the input array.

map-warp Each warp applies the given function to an ele-
ment of the input array.
Only available for Nvidia GPUs.

map-lane Each work item inside a warp applies the given
function to an element of the input array.
Only available for Nvidia GPUs.

map-seq Apply the given function to every element of the
input array sequentially.

reduce-seq Perform the reduction using the given binary re-
duction function and initial value on the input
array sequentially.

reorder-stride Access input array with a given stride to main-
tain memory coalescing.

toLocal Store the results of a given function to local
memory.

toGlobal Store the results of a given function to global
memory.

asVector Turns the elements of an array into vector type
of a given width.

asScalar Turns the elements of an array into scalar type.
vectorize Vectorize a given function by a given width.

Table 5.2: Low-level OpenCL patterns used for code generation.

5.3 patterns : design and implementation 145

in the same warp can be avoided because a warp executes in a
lock-step manner. To exploit this optimization we provide the
map-warp pattern which assigns work to a warp, i. e., a group of
32 work-items. The map-lane pattern is used to assign work to
an individual work-item inside a warp.

sequential map and reduce The map-seq and reduce-seq pat-
terns perform a sequential map and reduction, respectively, within a
single work-item.

For the map-seq pattern, the semantics and type are the same as
for the high-level map pattern shown in Definition 5.1. This is not the
case for the reduce-seq and reduce patterns, where their types differ.
For the high-level reduce pattern, we require the customizing binary
operator to be associative and commutative in order to allow for an
efficient parallel implementation. As the reduce-seq pattern performs
a sequential reduction, we can relax these requirements, therefore, we
define reduce-seq separately.

definition 5.8. Let xs be an array of size n with elements xi where 0 <
i 6 n. Let ⊕ be a binary customizing operator with the identity element id⊕.
The reduce-seq pattern is then defined as follows:

reduce-seq (⊕) id⊕ [x1, x2, . . . , xn]
def
= [(. . . ((id⊕⊕ x1)⊕ x2) . . .⊕ xn)]

The types of (⊕), id⊕, ~x, and reduce are as follows:

(⊕) : ((α,β)→ α),

id⊕ : α,

xs : [β]n,

reduce-seq (⊕) id⊕ xs : [α]1.

reorder-stride The reorder-stride pattern enforces a special re-
ordering of an array. In our code generator (see Section 5.5) no code
is produced for this pattern, but instead it affects how the following
patterns reads it input from memory. This pattern, therefore, indi-
rectly produces a strided-access pattern which ensures that when
each work-item accesses multiple elements two consecutive work-
items access consecutive memory elements at the same time. This
corresponds to the coalesced memory accesses, which are beneficial on
modern GPUs as discussed in Chapter 2.

definition 5.9. Let s be an integer value. Let xs be an array of size m with
elements xi, where 0 < i 6 m. Let us assume that m is evenly divisible by

146 code generation using patterns

m = 8, s = 4, n =2
x1 x2 x3 x4 x5 x6 x7 x8
y1 y2 y3 y4 y5 y6 y7 y8

Figure 5.6: Visualization of the reorder-stride pattern for an array of size 8

and a stride of 4

s and that m = s× n for some integer value n. The reorder-stride pattern
is then defined as follows:

reorder-stride s [x1, x2, . . . , xm]
def
= [y1,y2, . . . ,ym], where

yi
def
= x((i−1) div n+s×((i−1) mod n))+1

Where div is integer division and mod is the modulo operation. The types
of s, xs, and reorder-stride are as follows:

s : int,

xs : [α]m,

reorder-stride s xs : [α]m.

Figure 5.6 visualizes the reordering for an array xs with 8 elements
and a stride of 4. In the reordered array the first two elements y1 and
y2 correspond to x1 and x5.

tolocal and toglobal The toLocal and toGlobal patterns are
used to specify where the result of a given function f should be
stored. As explained in more detail in Chapter 2, OpenCL defines
two distinct address spaces: global and local. Global memory is the
commonly used large but slow memory. On GPUs, the comparatively
small local memory has a high bandwidth with low latency and is
used to store frequently accessed data. With these two patterns, we
can exploit the memory hierarchy defined in OpenCL.

First, we define toLocal:

definition 5.10. Let f be a function. The toLocal pattern is then defined as
follows:

toLocal f
def
= f ′, where f ′ x

def
= f x, ∀x, and f ′ is guaranteed to store

its result in local memory.

5.3 patterns : design and implementation 147

The types of f, and toLocal are as follows:

f : (α→ β),

toLocal f : (α→ β).

The definition of toGlobal is correspondent:

definition 5.11. Let f be a function. The toGlobal pattern is then defined
as follows:

toGlobal f
def
= f ′, where f ′ x

def
= f x, ∀x and f ′ is guaranteed to store

its result in global memory.

The types of f, and toGlobal are as follows:

f : (α→ β),

toGlobal f : (α→ β).

asvector , asscalar , and vectorize The OpenCL program-
ming model supports vector data types such as float4 where op-
erations on this type will be executed in the hardware vector units.
In the absence of vector units in the hardware, the OpenCL compiler
generates automatically a version of the code using scalar data types.

The asVector and asScalar patterns change the data type into vec-
tor elements and scalar elements, correspondingly. For instance, an
array of float is transformed into an array of float4 as seen in the
motivation example (Figure 5.4).

We start by defining the asVector pattern.

definition 5.12. Let n be a positive integer value. Let xs be an array of
size m with elements xi where 0 < i 6 m. Let us assume, that m is evenly
divisible by n. The asVector pattern is then defined as follows:

asVector n [x1, x2, . . . , xm]
def
=[

{x1, . . . , xn}, {xn+1, . . . , x2n}, . . . , {xm−n+1, . . . , xm}
]
,

where {x1, . . . , xn} denotes a vector of width n.
The types of n, xs, and asVector are as follows:

n : int

xs : [α]m,

asVector n xs : [αn]m
n

.

Here α is required to be a basic scalar type, e. g., int or float, and αn
denotes the vectorized version of that type with a vector width of n.

The corresponding asScalar pattern is defined as follows.

148 code generation using patterns

definition 5.13. Let xs be an array of size mn whose elements are vectors
of width n. We denote the individual vector elements of the ith element of
xs as x((i−1)×n)+j where 0 < i 6 m

n and 0 < j 6 n. The asScalar pattern
is then defined as follows:

asScalarn
[
{x1, . . . , xn}, {xn+1, . . . , x2n}, . . . , {xm−n+1, . . . , xm}

]
def
= [x1, x2, . . . , xm],

where {x1, . . . , xn} denotes a vector of width n.
The types of xs, and asScalarn are as follows:

xs : [αn]m
n

,

asScalarn xs : [α]m.

Here α is required to be a basic scalar type, e. g., int or float, and αn
denotes the vectorized version of that type with a vector width of n.

We will almost always omit the subscript for asScalarn, as n can be
inferred from the input array.

Finally, we define the vectorize pattern.

definition 5.14. Let n be a positive integer value. Let f be a function. The
vectorize pattern is then defined as follows:

vectorize n f
def
= fn, where fn {x1, . . . , xn} = {f x1, . . . , f xn}

and {x1, . . . , xn} denotes a vector of width n.
The types of n, f, and vectorize are as follows:

n : int,

f : (α→ β),

vectorize n f : (αn → βn).

Here α and β are required to be basic scalar types, e. g., int or float, αn
and βn denote vectorized versions of these types with a vector width of n.

5.3.3 Summary

In this section we introduced two type of patterns: high-level algo-
rithmic patterns and low-level, OpenCL-specific patterns. While all of
these patterns can be used by the application programmer to describe
the solution for a particular problem, we expect the programmer to
focus on the algorithmic patterns which should be used to express
a high-level algorithmic implementation of the problem solution. We
will see in the next section how such an implementation composed
of our high-level algorithmic patterns can be systematically rewritten

5.4 rewrite rules 149

using rewrite rules. During this process the original implementation
will be modified and OpenCL-specific patterns will be used.

5.4 rewrite rules

This section introduces our set of rewrite rules that transform high-
level expressions written using our algorithmic patterns into seman-
tically equivalent expressions. One goal of our approach is to keep
each rule as simple as possible and only express one fundamental
concept at a time. For instance the vectorization rule, as we will see,
is the only rule expressing the vectorization concept. This is different
from most previous library or compiler approaches which provide or
produce special vectorized versions of different algorithmic patterns
such as map or reduce. The advantage of our approach lies in the
power of composition: many rules can be applied successively to pro-
duce expressions that compose hardware concepts or optimizations
and that are provably correct by construction.

Similarly to our patterns, we distinguish between algorithmic and
OpenCL-specific rules. Algorithmic rules produce derivations that
represent different algorithmic choices. Our OpenCL-specific rules
transform expressions to OpenCL patterns. Once the expression con-
sists only of OpenCL patterns, it is possible to produce OpenCL code
for each single pattern straightforwardly with our code generator as
described in the following section.

We write a → b for a rewrite rule which allows to replace the oc-
currence of term a in an expression with term b. Sometimes multiple
rewrites are valid then we write a → b | c to indicate the choice to
replace term a either with term b or term c.

For each rule we provide a proof of its correctness, i. e., that apply-
ing the rewrite rule does not change the semantic of the expression
the rule is applied to. We will discuss some proofs directly here in
this section. All proofs can be found in Appendix A.

5.4.1 Algorithmic Rules

Each algorithmic rule formulates a provably correct statement of the
relationship of multiple algorithmic patterns. Applying the rules al-
lows to rewrite an expression and, by doing so, explore different
implementations. As the algorithmic rules are separated from the
OpenCL rules, these rules can explore valid implementations regard-
less of their concrete implementation in a low-level programming
model like OpenCL.

150 code generation using patterns

identity The identity rule in Equation (5.1) specifies that it is al-
ways valid to compose any function fwith the identity function id. As
we always operate on arrays, we technically compose f with map id.

f → f ◦map id | map id ◦ f (5.1)

The id function can act as a copy operation; this is, e. g., useful for
expressing copies of an array to local memory when composed with
the toLocal OpenCL pattern: toLocal (map id).

We show here just the proof for the first option. The proof for the
second option is shown in Appendix A.

Proof of Equation (5.1); option 1.
Let xs = [x1, . . . , xn].

(f ◦map id) xs = f (map id xs)

{definition of map}

= f [id x1, id x2, . . . , id xn]

{definition of id}

= f [x1, x2, . . . , xn]

{definition of map}

= f xs

iterate decomposition The rule in Equation (5.2) expresses
the fact that an iteration can be decomposed into several iterations.

iterate 1 f → f

iterate (m+n) f → iterate m f ◦ iterate n f
(5.2)

This rule can be proven by induction as shown in Appendix A.

reorder commutativity The following Equation (5.3) shows
that if the data can be reordered arbitrarily, as indicated by the reorder
pattern, then, it does not matter if we apply a function f to each
element before or after the reordering.

map f ◦ reorder → reorder ◦map f

reorder ◦map f → map f ◦ reorder
(5.3)

The proof can be found in Appendix A.

split-join The split-join rule expressed by Equation (5.4) parti-
tions a map into two maps.

map f → join ◦map (map f) ◦ split n (5.4)

5.4 rewrite rules 151

This allows us to nest map patterns in each other and, thus, maps the
computation to the thread hierarchy of the OpenCL programming
model: using the OpenCL-specific rules (discussed in Section 5.4.2)
we can rewrite map (map f) for example to map-workgroup (map-local f).
This is an expression we have seen in our motivation example (Fig-
ure 5.4) for mapping a computation to OpenCL work-group and
work-item.

We show the proof here, which employs the definitions of split, map,
and join.

Proof of Equation (5.4). We start from the right-hand side and show
the equality of both sides. Let xs = [x1, . . . , xm].

(join ◦map (map f) ◦ split n) xs = join (map (map f) (split n xs))

{definition of split}

= join (map (map f) [[x1, . . . , xn], . . . , [xm−n+1, . . . , xm]])

{definition of map}

= join [map f [x1, . . . , xn], . . . , map f [xm−n+1, . . . , xm]]

{definition of map}

= join [[f x1, . . . , f xn], . . . , [f xm−n+1, . . . , f xm]]

{definition of join}

= [f x1, . . . , . . . , f xm]

{definition of map}

= map f xs

reduction We seek to express the reduction function as a compo-
sition of other primitive functions, which is a fundamental aspect of
our work. From the algorithmic point of view, we first define a partial
reduction pattern part-red:

definition 5.15. Let xs be an array of size m with elements xi where
0 < i 6 m. Let ⊕ be an associative and commutative binary customiz-
ing operator with the identity element id⊕. Let n be an integer value where
m is evenly divisible by n. Let σ be a permutation of [1, . . . ,m]. The part-red
pattern is then defined as follows:

part-red (⊕) id⊕ n [x1, x2, . . . , xm]
def
=

[xσ(1) ⊕ · · · ⊕ xσ(n), . . . , xσ(m−n+1) ⊕ · · · ⊕ xσ(m)]

152 code generation using patterns

The types of (⊕), id⊕, n, xs, and part-red are as follows:

(⊕) : ((α,α)→ α),

id⊕ : α,

n : int,

xs : [α]m,

part-red (⊕) id⊕ xs : [α]m
n

.

This partial reduction reduces an array of m elements to an array of
m/n elements, without respecting the order of the elements of the
input array.

The reduction can be expressed as a partial reduction combined
with a full reduction as shown in Equation (5.5). This rule ensures
that we end up with one unique element.

reduce (⊕) id⊕ → reduce (⊕) id⊕ ◦ part-red (⊕) id⊕ (5.5)

The rule can be proven using the definitions of reduce and part-red
as well as exploiting the commutative and associative property of ⊕.
The proof is shown in Appendix A.

partial reduction Equation (5.6) shows the rewrite rules for
the partial reduction.

part-red (⊕) id⊕ n

→ reduce (⊕) id⊕
| part-red (⊕) id⊕ n ◦ reorder

| join ◦map (part-red (⊕) id⊕ n) ◦ split m

| iterate logm(n) (part-red (⊕) id⊕ m)

(5.6)

The first option for partial reduction leads to the full reduction. This
rule is obviously only valid if the types on both sides match.

The next possible derivation expresses the fact that it is possible
to reorder the elements to be reduced, expressing the commutativ-
ity property we demand in our definition of reduction (see Defini-
tion 5.2).

The third option is actually the only place where parallelism is ex-
pressed in the definition of our reduction pattern. This rule expressed
the fact that it is valid to partition the input elements first and then
reduce them independently. This exploits the associativity property
we require from the reduction operator.

Finally, the last option expresses the fact that it is possible to reduce
the input array in multiple steps, by performing an iterative process
where in each step a partial reduction is performed. This concept
is very important when considering how the reduction function is

5.4 rewrite rules 153

typically implemented on GPUs, as we saw in our discussion of the
parallel reduction implementations shown in Listing 5.1–Listing 5.7.

All options can be proven using the definitions of reduce and
part-red as well as the commutativity and associativity of ⊕. The third
rule is shown via induction. All proofs can be found in Appendix A.

simplification rules Equation (5.7) shows our simplification
rules. These rules express the fact that consecutive split-join pairs and
asVector-asScalar pairs can be eliminated.

joinn ◦ split n → id

split n ◦ joinn → id

asScalarn ◦ asVector n → id

asVector n ◦ asScalarn → id

(5.7)

These rules follow directly from the definitions of the involved pat-
terns. The proofs are shown in Appendix A.

fusion rules Finally, our rules for fusing consecutive patterns
are shown in Equation (5.8).

map f ◦map g → map (f ◦ g)
reduce-seq (⊕) id⊕ ◦map f →

reduce-seq
(
λ (a,b) .a⊕ (f b)

)
id⊕

(5.8)

The first rule fuses the functions applied by two consecutive maps.
The second rule fuses the map-reduce pattern by creating a lambda
function that is the result of merging functions f and (⊕) from the
original reduction and map, respectively. This rule only applies to
the sequential reduce pattern since this is the only implementation
not requiring the associativity property required by the more generic
reduce pattern. The functional programming community has studied
more generic rules for fusion [42, 97]. However, as we currently focus
on a restricted set of patterns, our simpler fusion rules have, so far,
proven to be sufficient.

The proofs for both rules are straightforward. The proof for the
first rule is shown here, the one for the second rule is shown in Ap-
pendix A.

154 code generation using patterns

Proof of Equation (5.8); rule 1. Let xs = [x1, . . . , xn].

(map f ◦map g) xs = map f (map g xs)

{definition of map}

= map f [g x1, . . . ,g xn]

{definition of map}

= [f (g x1), . . . , f (g xn)]

{definition of ◦} {definition of map}

= [(f ◦ g) x1, . . . , (f ◦ g) xn] = map(f ◦ g) xs

summary Figure 5.7 gives an overview of all algorithmic rules de-
fined in this subsection. The rules allow us to formalize different al-
gorithmic implementation strategies: the rewrite rules regarding the
reduce pattern (Figure 5.7e), for example, specify that an iterative im-
plementation of the reduction as well as a divide-and-conquer style
implementation are possible.

The split-join rule (Figure 5.7d) allows a divide-and-conquer style
implementation of the map pattern. This eventually enables different
parallel implementations which we can express with OpenCL, as we
will see in the next subsection.

The rules presented here are by no means complete and can easily
be extended to express more possible implementations. When adding
new patterns to the system, the rules have to be extended as well.

In the next subsection we will discuss OpenCL-specific rewrite
rules which allow us to map patter implementations to the low-level
OpenCL concepts.

5.4.2 OpenCL-Specific Rules

In this section, we discuss our OpenCL-specific rules that are used
to apply OpenCL optimizations and to lower high-level algorithmic
concepts down to OpenCL-specific ones. The code generation process
is described separately in the next section.

maps The rule in Equation (5.9) is used to produce the OpenCL-
specific map patterns that match the thread hierarchy of OpenCL.

map → map-workgroup | map-local

| map-global | map-warp

| map-lane | map-seq

(5.9)

When generating code the code generator has to ensure that the
OpenCL thread hierarchy is respected. For instance, it is only legal

5.4 rewrite rules 155

f → f ◦map id | map id ◦ f

(a) Identity

iterate 1 f → f

iterate (m+n) f → iterate m f ◦ iterate n f

(b) Iterate decomposition

map f ◦ reorder → reorder ◦map f
reorder ◦map f → map f ◦ reorder

(c) Reorder commutativity

map f → join ◦map (map f) ◦ split n

(d) Split-join

reduce (⊕) id⊕ → reduce (⊕) id⊕ ◦ part-red (⊕) id⊕ n
part-red (⊕) id⊕ n → reduce (⊕) id⊕

| part-red (⊕) id⊕ n ◦ reorder
| join ◦map (part-red (⊕) id⊕ n) ◦ split m
| iterate logm(n) (part-red (⊕) id⊕ m)

(e) Reduction

joinn ◦ split n | split n ◦ joinn → id
asScalarn ◦ asVector n | asVector n ◦ asScalarn → id

(f) Simplification rules

map f ◦map g → map (f ◦ g)
reduce-seq (⊕) id⊕ ◦map f →

reduce-seq
(
λ (a,b) .a⊕ (f b)

)
id⊕

(g) Fusion rules

Figure 5.7: Overview of our algorithmic rewrite rules.

156 code generation using patterns

to nest a map-local inside a map-workgroup and it is not valid to nest
a map-global or another map-workgroup inside a map-workgroup. In the
current implementation of the code generator context information is
maintained which records the nesting of patterns. Therefore, it is easy
to detect wrongly nested map patterns and reject the malformed code.

Proof of Equation (5.9). All of the options in this rule are correct by
definition, as all map patterns share the same execution semantics.

reduction There is only one rule for lowering the reduce pattern
to OpenCL (Equation (5.10)), which expresses the fact that the only
implementation known to the code generator is a sequential reduc-
tion.

reduce (⊕) id⊕ → reduce-seq (⊕) id⊕ (5.10)

Parallel implementations of the reduction are defined at a higher level
by composition of other algorithmic patterns, as seen in the previous
subsection. Most existing compilers and libraries which parallelize
the reduction treat it directly as a primitive operation which is not
expressed in terms of other more basic operations. With our approach
it is possible to explore different implementations for the reduction
by applying different rules.

The proof is straightforward (see Appendix A) given the associativ-
ity and commutativity of the ⊕ operator.

reorder Equation (5.11) presents the rule that reorders elements
of an array. The current implementation of the code generator sup-
ports two types of reordering: no reordering, represented by the id
function, and reordering with a certain stride s: reorder-stride s As de-
scribed earlier, the major use case for the stride reorder is to enable
coalesced memory accesses.

reorder → id | reorder-stride s (5.11)

The implementation of the code generator could be easily extended
to support other kinds of reordering functions, e. g., for reversing an
array, or transposing a matrix.

The proof for the id function is trivial. For the other option we have
to show, that the reorder-stride pattern is a valid reordering, i. e., that
it mapping of indices defines a permutation. We do this by showing
that the mapping of indices as defined in the reorder-stride definition is
a bijective function and, therefore, defines a permutation. The details
can be found in Appendix A.

5.4 rewrite rules 157

local and global memory Equation (5.12) contains two rules
that enable GPU local memory usage.

map-local f → toGlobal (map-local f)

map-local f → toLocal (map-local f)
(5.12)

They express the fact that the result of a map-local can always be stored
either in local memory or back in global memory. This holds since a
map-local always exists within a map-workgroup for which the local
memory is defined in OpenCL. These rules allow us to describe how
the data is mapped to the GPU memory hierarchy.

As discussed earlier, the implementation of the code generator en-
sures that the OpenCL hierarchy is respected by only allowing corre-
sponding nestings of map patterns.

Proof of Equation (5.12). These rules follow directly from the defini-
tion of toGlobal and toLocal, as these have no effect on the computed
value, i. e., they behave like the id function.

vectorization Equation (5.13) expresses the vectorization rule.

map f → asScalar ◦map (vectorize n f) ◦ asVector n (5.13)

Vectorization is achieved by using the asVector and corresponding
asScalar patterns which change the element type of an array and ad-
just the length accordingly. This rule is only allowed to be applied
once to a given map f pattern. This constrain can easily be checked
by looking at the function’s f type, i. e., if it is a vector type, the rule
cannot be applied. The vectorize pattern is used to produce a vector-
ized version of the customizing function f. Note that the vector width
n of the asVector pattern has to match with the factor used for the
vectorization of the function.

The proof is straightforward given the definitions of all involved
patterns and can be found in Appendix A.

summary Figure 5.8 shows an overview of the OpenCL-specific
rewrite rules. Each rule formalizes a different implementation or op-
timization strategy in OpenCL.

• The map rules (Figure 5.8a) describe the usage of the OpenCL
thread hierarchy with work-items and work-groups.

• The reduce rule (Figure 5.8b) specifies the simple sequential im-
plementation of reduction in OpenCL, the parallel reduction is
expressed in terms of other patterns as we saw in Section 5.4.1.

• The stride access rule (Figure 5.8c) enables coalesced mem-
ory access, which is crucial for performance as we saw in
Section 5.1.

158 code generation using patterns

map → map-workgroup | map-local
| map-warp | map-lane
| map-global | map-seq

(a) Map

reduce (⊕) id⊕ → reduce-seq (⊕) id⊕

(b) Reduction

reorder → id | reorder-stride s

(c) Stride accesses or normal accesses

map-local f → toGlobal (map-local f)
map-local f → toLocal (map-local f)

(d) Local/Global memory

map f → asScalar ◦map (vectorize n f) ◦ asVector n

(e) Vectorization

Figure 5.8: Overview of the OpenCL-specific rewrite rules.

• The local memory rule (Figure 5.8d) allows the usage of the fast
local memory. We saw the benefits of using the local memory
when evaluating the matrix multiplication expressed using the
allpairs pattern in Chapter 4.

• Finally, the vectorization rule (Figure 5.8e) enables vectorization,
which is a key optimization for the Intel CPU architectures as we
will see in Chapter 6.

As for the algorithmic rules, the OpenCL-specific rules presented
here are not complete and do not cover all possible optimizations in
OpenCL. Nevertheless, we will see in Chapter 6 that these rules are a
good starting set for generating efficient OpenCL code.

5.4.3 Applying the Rewrite Rules

In this section, we will discuss some examples to show how the
rewrite rules can be used to systematically rewrite applications ex-
pressed with the patterns introduced in Section 5.3. We will start by
looking back at the introductory example from Section 5.2. Then we
will look at the parallel reduction example and show that we can

5.4 rewrite rules 159

systematically derive optimized implementations equivalent to the
implementations discussed in Section 5.1.

5.4.3.1 A First Example: Scaling a Vector

Equation (5.14) shows the implementation of the vector scaling exam-
ple we used in Section 5.2 as our motivation example. The expression
shown here directly corresponds to Figure 5.4a.

mul3 x = x× 3
vectorScal = map mul3 (5.14)

The application developer uses the algorithmic pattern map together
with the customizing function mul3 which multiplies every element
with the number 3. The following Equation (5.15) shows how this im-
plementation can be systematically rewritten using the rewrite rules
introduced in this section. The numbers above the equal signs refer to
Figure 5.7 and Figure 5.8 indicating which rule was used in the step.

vectorScal = map mul3
5.7d
= join ◦map (map mul3) ◦ split n1
5.8e
= join ◦map

(
asScalar ◦map (vectorize n2 mul3) ◦ asVector n2)
◦ split n1

5.8a
= join ◦map-workgroup

(
asScalar ◦map-local (

vectorize n2 mul3

) ◦ asVector n2)
◦ split n1

(5.15)

To obtain the expression shown in Figure 5.4b we select n1 = 1024

and n2 = 4. This expression can then be used to generate OpenCL
code. We will discuss the process of OpenCL code generation in the
next section. But first we will discuss possible derivations for the par-
allel reduction.

5.4.3.2 Systematic Deriving Implementations of Parallel Reduction

In Section 5.1 we looked at several implementations of the parallel
reduction manually optimized for an Nvidia GPU. In this subsection
we want to resemble these implementations with corresponding ex-
pressions comprised of the patterns presented in Section 5.3. The im-
plementations presented earlier in Listing 5.1–Listing 5.7 are manual
implementations where optimizations have been applied ad-hoc. The
key difference to the implementations presented in this section is, that

160 code generation using patterns

1 vecSum = reduce ◦ join ◦map-workgroup
(

2 join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
3 iterate 7 (join ◦map-local (reduce-seq (+) 0) ◦ split 2) ◦
4 join ◦ toLocal (map-local (map-seq id)) ◦ split 1
5

)
◦ split 128

Listing 5.8: Expression resembling the first two implementations of parallel
reduction presented in Listing 5.1 and Listing 5.2.

these are systematically derived from a single high-level expression
using the rewrite rules introduced in this section. Therefore, these
implementations can be generated systematically by an optimizing
compiler. The rules guarantee that all derived expressions are seman-
tically equivalent.

Each OpenCL low-level expression presented in this subsection is
derived from the high-level expression Equation (5.16) expressing par-
allel summation:

vecSum = reduce (+) 0 (5.16)

The formal derivations defining which rules to apply to reach an ex-
pression from the high-level expression shown here are presented in
Appendix B for all expressions in this subsection.

first pattern-based expression Listing 5.8 shows our first
expression implementing parallel reduction. This expression closely
resembles the structure of the first two implementations presented in
Listing 5.1 and Listing 5.2. First the input array is split into chunks
of size 128 (line 5) and each work-group processes such a chunk of
data. 128 corresponds to the work-group size we assumed for our
implementations in Section 5.1. Inside of a work-group in line 4 each
work-item first copies a single data item (indicated by split 1) into the
local memory using the id function nested inside the toLocal pattern to
perform a copy. Afterwards, in line 3 the entire work-group performs
an iterative reduction where in 7 steps (this equals log2(128) follow-
ing rule 5.7e) the data is further divided into chunks of two elements
(using split 2) which are reduced sequentially by the work-items. This
iterative process resembles the for-loops from Listing 5.1 and List-
ing 5.2 where in every iteration two elements are reduced. Finally,
the computed result is copied back to the global memory (line 2).

The first two implementations discussed in Section 5.1 are very sim-
ilar and the only difference is which work-item remains active in the
parallel reduction tree. Currently, we do not model this subtle dif-
ference with our patterns, therefore, we cannot create an expression
which distinguishes between these two implementations. This is not
a major drawback, because none of the three investigated architec-

5.4 rewrite rules 161

1 vecSum = reduce ◦ join ◦map-workgroup
(

2 join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
3 iterate 7

(
λ xs .

4 join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦
5 reorder-stride ((size xs)/2) $ xs

)
◦

6 join ◦ toLocal (map-local (map-seq id)) ◦ split 1
7

)
◦ split 128

Listing 5.9: Expression resembling the third implementation of parallel
reduction presented in Listing 5.3.

1 vecSum = reduce ◦ join ◦map-workgroup
(

2 join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
3 iterate 7

(
λ xs . join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦

4 reorder-stride ((size xs)/2) $ xs
)
◦

5 join ◦ toLocal (map-local (reduce-seq (+) 0)) ◦ split 2 ◦
6 reorder-stride 128
7

)
◦ split (2× 128)

Listing 5.10: Expression resembling the fourth implementation of parallel
reduction presented in Listing 5.4.

tures favoured the first over the second implementation, as we saw
in Section 5.1. Therefore, our code generator always generates code
matching the second implementation, as we will discuss in more de-
tail in the next section.

avoiding interleaved addressing Listing 5.9 shows our sec-
ond expression implementing parallel reduction, which resembles the
third implementation of parallel reduction shown in Listing 5.3. The
reorder-stride pattern is used which makes local memory bank con-
flicts unlikely. Please note that the pattern is used inside the iterate
pattern. Therefore, the stride changes in every iteration, which is ex-
pressed by referring to the size of the array in the current iteration. We
use a lambda expression to name the input array (xs), use a size func-
tion to access its size, and use the $ operator, known from Haskell, to
denote function application, i. e., f ◦ g $ x = (f ◦ g) x.

increase computational intensity per work-item

Listing 5.10 shows our third expression implementing parallel reduc-
tion. This expression resembles the fourth Nvidia implementation
shown in Listing 5.4. By replacing the copy operation into the local
memory with a reduction of two elements we increase the computa-
tional intensity per work-item. The first reorder-stride pattern is used
to ensure the coalesced memory access when accessing the global
memory. As now each work-group processes twice the amount of

162 code generation using patterns

1 vecSum = reduce ◦ join ◦map-workgroup
(

2 join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
3 join ◦map-warp

(
4 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 1 ◦
5 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 2 ◦
6 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 4 ◦
7 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 8 ◦
8 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 16 ◦
9 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 32

10

)
◦ split 64 ◦

11 iterate 1
(
λ xs . join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦

12 reorder-stride ((size xs)/2) $ xs
)
◦

13 join ◦ toLocal (map-local (reduce-seq (+) 0)) ◦ split 2 ◦
14 reorder-stride 128
15

)
◦ split 256

Listing 5.11: Expression resembling the fifth implementation of parallel
reduction presented in Listing 5.5.

elements, we split the input data in twice the size of a work-group:
2× 128. By choosing the numerical parameters we can shift the granu-
larity and amount of work between a single and multiple work items.
Here we choose a larger parameter then previously for split to in-
crease the amount of work a work-group processes.

avoid synchronization inside a warp Listing 5.11 shows
our fourth expression implementing parallel reduction. This expres-
sion closely resembles the fifth implementation of the parallel reduc-
tion shown in Listing 5.5. The iterate pattern has been changed from
performing seven iterations down to a single one. This reflects the
OpenCL implementation, where the processing of the last 64 elements
is performed by a single warp. We express this using the map-warp
pattern, where inside the map-lane pattern is used together with the
split and join patterns to express that each work-item inside the warp
performs a reduction of two elements at a time. Instead of using the
iterate pattern, the single iteration steps has been unrolled, as it was
the case in Listing 5.5. The strides of the reorder-stride pattern are com-
puted based on the size of the array in each iteration step.

complete loop unrolling Listing 5.12 shows our fifth expres-
sion implementing parallel reduction. This expression closely resem-
bles the sixth implementation of the parallel reduction shown in List-
ing 5.6. The difference to the previous expression in Listing 5.11 is
small: we replace the iterate pattern with the individual iteration steps.
As we assume a fixed work-group size of 128 work-items, it is known
at compile time that only a single iteration step is required. If a larger

5.4 rewrite rules 163

1 vecSum = reduce ◦ join ◦map-workgroup
(

2 join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
3 join ◦map-warp

(
4 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 1 ◦
5 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 2 ◦
6 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 4 ◦
7 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 8 ◦
8 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 16 ◦
9 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 32

10

)
◦ split 64 ◦

11 join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 64 ◦
12 join ◦ toLocal (map-local (reduce-seq (+) 0)) ◦ split 2 ◦
13 reorder-stride 128
14

)
◦ split 256

Listing 5.12: Expression resembling the sixth implementation of parallel
reduction presented in Listing 5.6.

work-group size would be chosen, then the expression shown in List-
ing 5.12 would reflect this by including additional iteration steps.

fully optimized implementation Listing 5.13 shows our fi-
nal expression implementing parallel reduction. This expression re-
sembles the seventh, i. e., ultimately optimized implementation of the
parallel reduction shown in Listing 5.7. As in the original OpenCL im-
plementation, we increase the computational intensity compared to
the previous implementations by increasing the number of elements
processed by a single work-group. We express this by choosing a
larger blockSizewhen splitting the input array the first time. The first
reorder-stride expression ensures that memory accesses to the global
memory are coalesced.

conclusions In this subsection, we presented implementations
of the parallel reduction exclusively composed of our patterns. These
implementations resemble the OpenCL implementations presented
in Section 5.1. The presented expressions are all derivable from a
simple high-level expression describing the parallel summation. The
derivations are a bit lengthy and thus not shown here, but instead in
Appendix B.

By expressing highly specialized and optimized implementations
we show how flexible and versatile our patterns and rules are. In
Chapter 6, we will come back to these expressions and evaluate the
performance achieved by the OpenCL code generated from them. We
will see in the next section how these expressions can be turned into
OpenCL code.

164 code generation using patterns

1 vecSum = reduce ◦ join ◦map-workgroup
(

2 join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
3 join ◦map-warp

(
4 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 1 ◦
5 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 2 ◦
6 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 4 ◦
7 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 8 ◦
8 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 16 ◦
9 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 32

10

)
◦ split 64 ◦

11 join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 64 ◦
12 join ◦ toLocal (map-local (reduce-seq (+) 0)) ◦
13 split (blockSize/128) ◦ reorder-stride 128
14

)
◦ split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
(

map (| . |) ~x
)

(5.17)

where: |a| =

{
a if a > 0

−a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

5.4 rewrite rules 165

asum = reduce (+) 0 ◦ map (| . |)

5.7e
=

reduce (+) 0 ◦
join ◦ map (part-red (+) 0) ◦ split n ◦map (| . |)

5.7d
=

reduce (+) 0 ◦
join ◦ map (part-red (+) 0) ◦ split n ◦
join ◦ map (map (| . |)) ◦ split n

5.7f
=

reduce (+) 0 ◦
join ◦ map (part-red (+) 0) ◦map (map (| . |)) ◦ split n

5.7g
=

reduce (+) 0 ◦
join ◦ map (part-red (+) 0 ◦ map (| . |)) ◦ split n

5.8a
=

reduce (+) 0 ◦
join ◦ map (part-red (+) 0 ◦ map-seq (| . |)) ◦ split n

5.7e&5.8b
= reduce (+) 0 ◦

join ◦ map (reduce-seq (+) 0 ◦ map-seq (| . |)) ◦ split n

5.7g
=

reduce (+) 0 ◦
join ◦map

(
reduce-seq (λ a,b . a+ |b |) 0

)
◦ split n

Figure 5.9: Derivation for asum to a fused parallel version. The numbers
above the equality sign refer to the rules from Figure 5.7.

We start by applying the reduction rule 5.7e twice: first to replace
reduce with reduce ◦ part-red and then a second time to expand part-red.
We expand map, which can be simplified by removing the two corre-
sponding join and split patterns. Then two map patterns are fused
and in the next step the nested map is lowered into the map-seq pat-
tern. We then first transform part-red back into reduce (using rule 5.7e)
and then apply the OpenCL rule 5.8b. Finally, we apply rule 5.7g to
fuse the map-seq and reduce-seq into a single reduce-seq. This sequence
of transformations results in an expression which allows for a better
OpenCL implementation since just a single map pattern is used cus-
tomized with a reduction. No temporary storage is required for the
intermediate result in this expression.

One interesting observation is that in the final expression the two
customizing functions + and | . | are merged and a lambda expres-
sion has been created which is defined in terms of these functions:
λ a,b . a+ |b |. The generated lambda expression is not associative,
as a+ |b | 6= b+ |a |. Therefore, a sequential implementation of reduc-
tion is used. Nevertheless, the final expression implements a parallel
reduction, as the map pattern is used with the split and join patterns

166 code generation using patterns

to split the array in a divide-and-conquer style and the last pattern
executed is a reduce pattern customized with addition which can be
implemented in parallel, as we know.

5.4.4 Towards Automatically Applying our Rewrite Rules

The rewrite rules presented in this section define a design space of
possible implementations for a given program represented as an al-
gorithmic expression. The rules can safely be applied automatically
by a compiler as they – provably – do not change the semantics of the
input program.

Using the parallel reduction example, we have seen that multiple
implementations can be derived for the same high-level algorithmic
expression when applying different rules. This leads to the obvious,
but non-trivial, central question: which rules should be applied in
which order to obtain the best possible implementation for a particu-
lar target hardware device.

The system presented in this chapter constitutes the foundational
work necessary to be able to raise this question in the first place and
is, therefore, just an initial step towards a fully automated compiler
generating the most optimized parallel implementation possible for
a given hardware device from a single high-level program.

In Section 6.2.1 we will present an prototype implementation of
a search tool, which applies the rules completely automatically. Our
early tests with the parallel reduction program as an example sug-
gest, that it is possible to automatically find good implementations
on three different hardware architectures.

We intend to study techniques for efficiently searching the imple-
mentation space in the future, as will discuss in more detail in Sec-
tion 7.3.

5.4.5 Conclusion

In this section, we have introduced a set of rewrite rules which can
systematically rewrite expressions written using the patterns intro-
duced earlier in Section 5.3. The power of our approach lies in the
composition of the rules that produce complex low-level OpenCL-
specific expressions from simple high-level algorithmic expressions.

We have seen how the rules can be used to transform simple ex-
pressions written by an application developer into highly specialized
and optimized low-level OpenCL expressions. These low-level expres-
sions match hardware-specific concepts of OpenCL, such as mapping
computation and data to the thread and memory hierarchy, exploit-
ing memory coalescing, and vectorization. Each single rule encodes
a simple, easy to understand, and provable fact. By composition of

5.5 code generator & implementation details 167

the rules we systematically derive low-level expressions which are
semantically equivalent to the high-level expressions by construction.

In the next section we will investigate how OpenCL code is gener-
ated from the low-level expressions.

5.5 code generator & implementation details

In this section, we discuss how a low-level expression comprising pat-
terns from Section 5.3 and possibly derived using the rewrite rules
from Section 5.4 is turned into OpenCL code. We will see that this
process is surprisingly simple and straightforward. This is due to the
fact, that all complex decisions regarding optimizations are made at
an earlier stage: when applying the rewrite rules. This design was cho-
sen deliberately: it follows the principle of separation of concerns and
keeps the implementation of the code generator simple. The expres-
sion used as input explicitly specifies every important detail of the
OpenCL code to be generated, such that for every expression there is
a one-to-one mapping to OpenCL code.

We will start our discussion by looking at the parallel reduction
example and studying how OpenCL code is generated for the ex-
pressions discussed in the previous section. We will then show how
OpenCL code is generated for each of the patterns defined in Sec-
tion 5.3. We will see that there are patterns for which it is not possible
to generate OpenCL code without making important implementation
decisions. These expressions do not specify the OpenCL implemen-
tation detailed enough. We can use the rewrite rules presented in
Section 5.4 to transform these expression further until, finally, the ex-
pression is precise enough for the code generator.

We will then shift our focus to the implementation of the type sys-
tem and how this helps to implement the static memory allocator
inside our code generator.

Finally, we will provide some details about the software infrastruc-
ture we used in our implementation.

5.5.1 Generating OpenCL Code for Parallel Reduction

In the previous section, we discussed how multiple low-level expres-
sions can be derived from the simple high-level pattern reduce (+) 0.
These derived expressions (shown in Listing 5.8–Listing 5.13) resem-
ble the OpenCL implementations we discussed in Section 5.1 at the
beginning of this chapter.

The following expression shows the first expression we derived.
The same code is shown in Listing 5.8.

vecSum = reduce ◦ join ◦map-workgroup
(

join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦

168 code generation using patterns

iterate 7 (join ◦map-local (reduce-seq (+) 0) ◦ split 2) ◦
join ◦ toLocal (map-local (map-seq id)) ◦ split 1)
◦ split 128

Listing 5.14 shows the OpenCL code generated by our code generator
for this expression. The overall structure of the expression can also
be found in the OpenCL code, as highlighted on the left-handed side.
OpenCL code is generated by traversing the expression and following
the data flow. For each pattern visited, OpenCL code is generated. For
some patterns, no code is generated, instead they change the array
type and, therefore, have an effect on how the code for following
patterns is generated.

The outermost for-loop (line 9 in Listing 5.14) is generated for the
map-workgroup pattern. The loop variable wg_id is based on the iden-
tifier of the work-group. No code is emitted for the split 128 pattern,
but rather its type influences the boundaries of the loop generated for
the following map-workgroup pattern. In each iteration of the loop, a
work-group processes a chunk of 128 elements of the input array.

The first block nested inside the for-loop (line 11—line 15) corre-
sponds to the subexpression: join ◦ toLocal (map-local (map-seq id)) ◦
split 1. As previously, we assume a work-group size of 128 work-items,
therefore, we know that after splitting the 128 elements processed by
the work-group with split 1 each work-item processes exactly one el-
ement. Based on this knowledge, we do not emit a for-loop for the
map-local pattern, as we did for the map-workgroup pattern, instead we
emit the single line 12, where the local identifier of the work-item is
obtained. In the following line 13, the id function is invoked (defined
in line 1) to copy data from the input array to a local array sdata1.
The index used to read from the global memory is derived from wg_id
and l_id, which ensures that each work-item in each work-group
reads a separate element. In contrast, the index for writing only uses
l_id, because the result is stored in the local memory and, therefore,
each work-group operates on a separate copy of sdata1. This section
of the code is finished by the barrier in line 15, which is emitted
for the map-local pattern to ensure proper synchronization between
the work-items in the work-group. There is no synchronization state-
ment necessary for the map-seq pattern, as this pattern is only used
sequentially in the context of a single work-item.

The second block (line 16—line 35) corresponds to the subexpres-
sion performing the iteration: iterate 7 (. . .). For the iterate pattern, a
for-loop is emitted (line 22) performing the actual iteration. The loop
is annotated with a #pragma unroll 1 statement, which prevents the
OpenCL compiler from unrolling the loop. The reason for this im-
plementation is, that we want to control the unrolling of this loop
explicitly with the iteration rewrite rule introduced in Section 5.4.
Additional code is generated before and after the for-loop. Before, a

5.5 code generator & implementation details 169

1 float id(float x) { return x; }
2 float sumUp(float x, float y) { return x+y; }
3 kernel
4 void vecSum(global float* g_idata, global float* g_odata,
5 unsigned int N, local float* sdata) {
6 local float* sdata1 = sdata;
7 local float* sdata2 = &sdata1[128];
8 local float* sdata3 = &sdata2[64];
9 for (int wg_id = get_group_id(0); wg_id < (N / (128));

10 wg_id += get_num_groups(0)) {
11 {
12 int l_id = get_local_id(0);
13 sdata1[l_id] = id(g_idata[(wg_id * 128) + l_id]);
14 }
15 barrier(CLK_LOCAL_MEM_FENCE);
16 {
17 int size = 128;
18 local float* sin = sdata1;
19 local float* sout =
20 ((7 & 1) != 0) ? sdata2 : sdata3;
21 #pragma unroll 1
22 for (int j = 0; j < 7; j += 1) {
23 int l_id = get_local_id(0);
24 if (l_id < size / 2) {
25 float acc = 0.0f;
26 for(int i = 0; i < 2; ++i) {
27 acc = sumUp(acc, sin[(l_id * 2) + i]); }
28 sout[l_id] = acc;
29 }
30 barrier(CLK_LOCAL_MEM_FENCE);
31 size = (size / 2);
32 sin = (sout==sdata3) ? sdata3:sdata2;
33 sout = (sout==sdata3) ? sdata2:sdata3;
34 }
35 }
36 {
37 int l_id = get_local_id(0);
38 if (l_id < 1) {
39 g_odata[wg_id + l_id] = id(sdata2[l_id]);
40 }
41 }
42 }
43 }

ma
p-

wo
rk

gr
ou

p

ma
p-

lo
ca

l
it

er
at

e

ma
p-

lo
ca

l

ma
p-

lo
ca

l

Listing 5.14: OpenCL code generated for the expression in Listing 5.5.1
implementing parallel reduction.

170 code generation using patterns

variable (size) capturing the current size of the input array is created
(line 17). The size of this variable is updated after the loop, based on
the effect of the nested pattern on the size of the array. In this case, a
partial reduction is performed reducing the array by half. Therefore,
the size variable is halved in line 31 after every iteration. A pair of
pointers is created (line 18 and line 19) and swapped after each iter-
ation (line 32 and line 33), so that the nested pattern has fixed input
and output pointers to operate on.

The nested block ranging from line 23 to line 30 corresponds
to the pattern composition nested inside the iterate pattern: join ◦
map-local (reduce-seq (+) 0) ◦ split 2. For the map-local pattern, the
local work-group identifier is obtained and an if statement is emitted
(line 24). No for-loop is emitted, as it is clear that the size of the array
is maximal 128 (from the definition of size in line 17), because the
variable is halved after each iteration (line 31). The size information
of the array is available in the array’s type and, therefore, available
when code is generated for the map-local pattern. Inside the if state-
ment the code for the reduce-seq pattern is emitted. A for-loop is
generated (line 26) which iterates over the input chunk, which is in
this case of size 2, due, to the split 2 pattern. An accumulation vari-
able (acc, line 25) is initialized with the neutral value of the reduction
and then used to store the temporary reduction results. In line 28,
the result is stored to the memory using the out pointer prepared
by the iterate pattern. Finally, for the map-local pattern a barrier for
synchronization is emitted.

The final block (line 36—line 41) corresponds to the last subexpres-
sion: join ◦ toGlobal (map-local (map-seq id)) ◦ split 1. Similar to before,
an if-statement is emitted for the map-local pattern and the copy from
the local to the global memory is performed in line 39 by the code
emitted for the map-seq id pattern. No synchronization statement has
to be emitted for the map-local pattern, as there is no following pattern
to synchronize with.

The OpenCL codes for the other parallel reduction implementa-
tions are similar, as the code generation process remains the same: the
expression is traversed following the data flow. For each visited pat-
tern, OpenCL code is emitted, or they influence the code generation
by changing the type and, thus, encode information for the following
patterns.

In the following section, we study the OpenCL code generated for
each pattern individually.

5.5.2 Generating OpenCL Code for Patterns

Table 5.3 shows all patterns introduced in Section 5.3. The code gener-
ator does not know how to generate OpenCL code for all patterns, for
example there are are many different options for implementing the

5.5 code generator & implementation details 171

Algorithmic Patterns OpenCL Patterns

map zip map-workgroup reduce-seq
reduce split map-local reorder-stride
reorder join map-global toLocal

iterate map-warp toGlobal
map-lane asVector
map-seq asScalar

vectorize

Table 5.3: Overview of all algorithmic and OpenCL patterns. Code is gener-
ated only for the patterns highlighted in bold.

reduce pattern in OpenCL, as we discussed in Section 5.1. Therefore,
the code generator would have to make a choice which of the pos-
sible implementations to pick. We want to avoid such situations, as
this complicates the implementation of the code generator and limits
both its flexibility and the performance of the generated code. In our
approach all decisions about the implementation of reduce has to be
made before the code generator is invoked by applying the rewrite
rules presented in Section 5.4 which allow to derive specialized low-
level implementations from high-level expressions.

The code generator generates code only for the highlighted pat-
terns in Table 5.3 (all patterns in the last three columns). The three
patterns in the first column: map, reduce, and reorder, have to be elim-
inated from an expression before the code generation process can
begin.

We will now discuss in more detail the code generation process for
all highlighted patterns from Table 5.3.

zip The code generator emits no OpenCL code for the zip pattern.
Instead zip’s type has an effect on how code for following patterns is
generated. Let us look at the following example, where the zip and
map-global patterns are used together:

map-global (+) (zip xs ys) (5.18)

When processing this expression, the zip pattern is visited first. The
type of zip makes it explicit to the code generator that, when emitting
code for the following map-global, two elements – one element from
each array – have to be read together. In the implementation, the code
generator will investigate the type of the input array before emitting
code for the map-global.

split and join Similar to the zip pattern, no OpenCL code is
emitted for neither split nor join. By encoding the size of arrays in

172 code generation using patterns

the type system, the information on how the data was shaped by
the split and join patterns is passed to the following patterns. This
information is used later when generating the OpenCL code for per-
forming OpenCL memory accesses. We will discuss the type system
implementation in more detail in Section 5.5.3.

iterate For the iterate f n pattern a for-loop is emitted by the code
generator. As seen in Listing 5.14 in the previous section, two pointers
are generated and swapped after each iteration to provide input and
output pointers to the nested pattern. A variable storing the size of
the input array is generated and updated after each iteration, based
on the effect the function f has on the array size when processing the
array.

parallel opencl maps The OpenCL code generation for each
of the map patterns (map-workgroup, map-local, map-global, map-warp,
and map-lane) is rather straightforward.

We saw examples of the generated OpenCL code in Listing 5.14 in
the previous section. In general, a for-loop is emitted, where the loop
variable refers to the corresponding identifier, i. e., the work-group id,
local work-item id, global work-item id, and so on. After the loop,
an appropriate synchronization mechanism is emitted. As there is no
synchronization between work-items of different work-groups, the
map-workgroup and map-global patterns emit no synchronization state-
ment directly, but after these patterns the OpenCL kernel is termi-
nated and a new OpenCL kernel is created to continue the computa-
tion. For the map-local and map-warp patterns, a barrier is emitted to
synchronize the work-items organized inside a work-group. For the
work-items organized inside a warp no synchronization is required,
therefore, the map-lane emits no synchronization statement.

When the code generator knows statically that a for-loop will be
iterated at most once, an if statement is emitted instead. If it is fur-
thermore clear that the loop will be iterated exactly once, the loop
can be avoided completely. We saw both of these cases in Listing 5.14

in the previous section. The code generator uses the array size infor-
mation from the type system for this.

sequential map and reduction The OpenCL implementa-
tions of the sequential map-seq and reduce-seq patterns are shown in
Listing 5.15 and Listing 5.16. Both implementations are straightfor-
ward. The map-seq implementation applies its customizing function to
each element of the input array and stores the outputs in an output
array. The reduce-seq implementation uses an accumulation variable
to accumulate the result of the reduction while it iterates through the
input array. After the for-loop, the result is stored in the output array.

5.5 code generator & implementation details 173

1 for (int i = 0; i < size; ++i) {
2 output[out_index] = f(input[in_index]);
3 }

Listing 5.15: Structure of the OpenCL code emitted for the map-seq pattern.

1 float acc = 0.0f;
2 for (int i = 0; i < size; ++i) {
3 acc = f(acc, input[in_index]);
4 }
5 output[out_index] = acc;

Listing 5.16: Structure of the OpenCL code emitted for the reduce-seq pattern.

The input and output indices: in_index and out_index are gener-
ated based on the pattern in which the map-seq or reduce-seq is nested
in. We saw in Listing 5.14 that access to the global memory is based
on the work-group and work-item identifier, while the local mem-
ory access is only based on the work-item identifier, because each
work-item has its exclusive copy of local memory to operate on. The
reorder-stride pattern influences the generation of the indices too, as
we describe next.

reorder-stride No code is emitted for the reorder-stride pattern,
rather it influences the generation of the next input index which is
used to read from memory.

When visiting the reorder-stride pattern an information about the
stride used (s) is stored on a stack which is consumed the next time
an input index is generated. The index generation then emits an index
which controls which element is read by which thread.

The formula for reorder-stride s (see Definition 5.9) is defined as:
(j − 1)/n + s × ((j − 1) mod n) + 1, where j is the 1-based index to
be changed and n = size/s. In the 0-based indexing in OpenCL the
formula simplifies to: j/n+ s× (j mod n).

The second expression implementing parallel reduction shown in
Listing 5.9 added a reorder-stride size/2 pattern as compared to the
first expression for which we showed the compiled OpenCL code in
Listing 5.14. Here size is denoting the size of the input array. When
looking at the OpenCL code generated and shown in Listing 5.14, we
can see that the index generated for the for-loop in line 27 is:
l_id * 2 + i. Together with the array length, this gives us:

j = l_id * 2 + i
s = size/2
n = 2

174 code generation using patterns

After applying the reorder-stride formula, we get:

(l_id * 2 + i) / 2 + (size/2) * ((l_id * 2 + i) % 2)

Which can be simplified by applying integer division and modulo
rules. Finally, giving us:

l_id + (size/2) * i

Which is the index used in the OpenCL code after performing the
reordering with the reorder-stride pattern.

Now we can also see why this reordering is called reorder-stride,
as i is the innermost loop index starting at 0 and incrementing it will
multiply the stride which is added as an offset to l_id. This index will
ensure that each work-item reads a different element from the input
array than before. In this case, the reordering is applied to avoid local
memory bank conflicts.

tolocal and toglobal For both patterns, no OpenCL code is
emitted. The patterns change the memory location of the nested pat-
tern, i. e., where the nested pattern should write to. When traversing
an expression, these patterns will be always visited first before the
nested pattern. The information on where to write is passed along
when visiting the nested pattern.

asvector , asscalar , and vectorize The asVector, and asScalar
patterns influence the type system and no OpenCL code is emitted
when visiting them. Type casts are emitted by the following patterns
to reflect the change of data type in OpenCL.

The vectorize pattern is used to vectorize functions. Our current
strategy is quite simplistic. When emitting the OpenCL code for a vec-
torized function, the data types of the input and output arguments
are changed appropriately and the body of the function is checked
if it contains operations which are supported on vector data types
in OpenCL, e. g., the usual arithmetic operators. If the body contains
other operations, our process fails and no OpenCL code can be gener-
ated. In the future, we plan to incorporate a more advanced approach
for vectorization of functions, e. g., like the one presented in [98].

5.5.3 The Type System and Static Memory Allocation

Data types are usually primarily used to prevent errors when com-
posing functions. While we use data types for the same purpose in
our system, we also use them for an additional purpose: to store in-
formation about the size of arrays processed by our expressions. This
information is used by the code generator to perform static memory
allocation, i. e., to reserve the correct amount of memory required by
a pattern.

5.6 conclusion 175

Our split n pattern splits an array in chunks of a fixed size n. As this
size is stored in the type system, it is naturally available when pro-
cessing the next patterns, by investigating their input type. Therefore,
there is no need to pass this information explicitly inside the code
generator, it is rather implicitly available through the types involved.

When computing the amount of memory required to store the re-
sult of a pattern application, we can look at the result type of the
pattern and easily infer the amount of memory from it. Using this
approach, no dynamic memory allocation is required so far.

We currently do not perform any analysis to reuse memory objects,
i. e., each pattern is assigned a newly allocated output array, even
though arrays could be reused. In Listing 5.14 three local memory ar-
rays (sdata1, sdata2, and sdata3) are used, while only a single array
was used in the original OpenCL implementation. In the future, we
intend to develop strategies to reuse memory and, thus, reduce the
overall memory footprint. We want to adopt well-understood algo-
rithms which are used for register allocation in compilers, like graph
coloring [41].

5.5.4 Implementation Details

Our system is implemented in C++, using the template system and
support for lambda functions. When generating code for a given low-
level expression, two basic steps are performed. First, we use the
Clang/LLVM compiler infrastructure to parse the expression and pro-
duce an abstract syntax tree for it. Second, we traverse the tree and
emit code for every function call representing one of our low-level
hardware patterns. We have implemented the type system using tem-
plate meta-programming techniques.

To simplify our implementation we leverage the SkelCL library in-
frastructure for eventually executing the generated OpenCL expres-
sion and to transfer data to and from the GPU.

5.6 conclusion

In this chapter we introduced a novel code generation technique for
pattern-based programs. We started the chapter with an investiga-
tion of the portability of optimizations in OpenCL. We concluded,
that optimizations are not performance portable in OpenCL and ar-
gued for a more systematic approach. In the following we introduced
a set of high-level algorithmic patterns – similar to the algorithmic
skeletons defined in SkelCL in Part 2 – but also low-level OpenCL-
specific patterns resembling the OpenCL programming model. We
presented a formal system of rewrite rules which allow for systemati-
cally rewriting of pattern-based expressions, especially, for transform-
ing programs expressed with the high-level algorithmic patterns into

176 code generation using patterns

OpenCL-specific programs expressed with the low-level patterns. We
showed the soundness of our approach by proving that the rewrite
rules do not change the program semantics. Finally, we presented an
OpenCL code generator which generates OpenCL code for programs
expressed with the low-level rules.

The rewrite rules encode different algorithmic as well as low-level
optimization choices. By applying the rules we derived expressions
resembling manually optimized OpenCL code written by Nvidia and
performed an optimization to fuse two pattern, enabling the genera-
tion of an optimized implementation for the asum benchmark, which
we could not generate with SkelCL.

In the next chapter, we will evaluate the performance of the system-
atically generated OpenCL code. We will also investigate and evaluate
a prototype search tool which applies the rewrite rules automatically
to find good implementations on three different hardware architec-
tures for achieving performance portability.

6A P P L I C AT I O N S T U D I E S

In this chapter we present application studies evaluating the per-
formance of the OpenCL code generated from pattern-based ex-
pressions using our systematic code generation approach pre-

sented in the previous chapter. We first discuss our experimental
setup used for the runtime experiments. We will then start our eval-
uation by looking at the parallel reduction example which we used
throughout the previous chapter and compare the performance of the
manually optimized OpenCL implementations against the systemat-
ically generated code. We will discuss a brief case study showing
how the rewrite rules can be applied automatically and how effective
such an automatic search strategy is for a simple application exam-
ple. We will then investigate application examples from linear algebra,
physics, and mathematical finance.

For all applications we show performance results comparing the
generated OpenCL code against vendor provided libraries and man-
ually tuned OpenCL code.

6.1 experimental setup

We used three hardware platforms: an Nvidia GeForce GTX 480 GPU,
an AMD Radeon HD 7970 GPU, and a dual socket Intel Xeon E5530

server with 8 cores in total. We used the latest OpenCL runtime from
Nvidia (CUDA-SDK 5.5), AMD (AMD-APP 2.8.1) and Intel (XE 2013

R3). The GPU drivers installed were 310.44 for Nvidia and 13.1 for
AMD on our Linux system.

We use the profiling APIs from OpenCL and CUDA to measure ker-
nel execution time and the gettimeofday function for the CPU imple-
mentation. We exclude the data transfer time to and from the GPU
in all runtime numbers reported in this chapter, as we want to focus
on the quality of the generated OpenCL kernel code. We repeat each
experiment 100 times and report median runtimes.

6.2 parallel reduction

In this section we evaluate the performance of three of the low-level
expressions presented in Section 5.4.3.2 performing a parallel summa-
tion of an array. These expressions resemble corresponding OpenCL
code provided by Nvidia discussed at the beginning of Chapter 5.

177

178 application studies

(a)

1 vecSum = reduce ◦ join ◦map-workgroup
(

2 join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
3 iterate 7 (join ◦map-local (reduce-seq (+) 0) ◦ split 2) ◦
4 join ◦ toLocal (map-local (map-seq id)) ◦ split 1
5

)
◦ split 128

(b)

1 vecSum = reduce ◦ join ◦map-workgroup
(

2 join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
3 iterate 7

(
λ xs . join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦

4 reorder-stride ((size xs)/2) $ xs
)
◦

5 join ◦ toLocal (map-local (reduce-seq (+) 0)) ◦ split 2 ◦
6 reorder-stride 128
7

)
◦ split (2× 128)

(c)

1 vecSum = reduce ◦ join ◦map-workgroup
(

2 join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
3 join ◦map-warp

(
4 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 1 ◦
5 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 2 ◦
6 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 4 ◦
7 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 8 ◦
8 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 16 ◦
9 join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 32

10

)
◦ split 64 ◦

11 join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 64 ◦
12 join ◦ toLocal (map-local (reduce-seq (+) 0)) ◦
13 split (blockSize/128) ◦ reorder-stride 128
14

)
◦ split blockSize

Figure 6.1: Three low-level expressions implementing parallel reduction.

All three expressions have been systematically derived from the high-
level expression for the parallel summation:

vecSum = reduce (+) 0

The formal derivations are shown in Appendix B.
Figure 6.1 shows the three expressions we will use for our perfor-

mance comparison. The first expression (Figure 6.1a) corresponds to
the first unoptimized Nvidia implementation (Listing 5.2), the second
expression (Figure 6.1b) corresponds to the fourth implementation
by Nvidia which has some optimizations applied (Listing 5.4), and
the third expression (Figure 6.1c) corresponds to the fully optimized
Nvidia implementation (Listing 5.7).

Figure 6.2 shows the performance of these three versions compared
to the corresponding native OpenCL implementations by Nvidia and
two additional libraries providing implementations of parallel reduc-
tion on GPUs. CUBLAS [43] represents the CUDA-specific implemen-

6.2 parallel reduction 179

Hardware Bandwidth Limit

0

50

100

150

200

Listing 5.2
Figure 6.1a

Listing 5.4
Figure 6.1b

Listing 5.7
Figure 6.1c

Thrust
CUBLAS

B
an

dw
id

th
 (

G
B

/s
)

Hand−written Generated Library

Figure 6.2: Performance comparisons for code generated for three low-level
expressions against native OpenCL code.

tation of BLAS that only runs on Nvidia hardware. BLAS does not
implement the parallel reduction but instead we used the asum bench-
mark for our comparison which performs a parallel reduction but in
addition applies a function computing the absolute value on every el-
ement of the input vector. We also include a parallel reduction imple-
mented with Thrust [17], a library for simplified GPU programming
developed by Nvidia and based on CUDA.

The results are reported in GB/s, i. e., the achieved memory band-
width which is computed by dividing the input data size in gigabytes
by the absolute runtime in seconds. This metric allows to compare
each version against the hardware bandwidth limit, which is marked
by a horizontal line at the top of Figure 6.2. The performance of the
generated OpenCL code from our three expressions matches, or even
slightly outperforms, the corresponding native OpenCL implementa-
tions written by Nvidia. These results show that our systematically
generated code can offer high performance, once the right set of op-
timizations – encoded in our rewrite rules – is applied. The perfor-
mance of our generated code for the fully optimized low-level expres-
sion even matches the performance of the highly optimized CUBLAS
library written by Nvidia and outperforms the Thrust library.

6.2.1 Automatically Applying the Rewrite Rules

For the parallel reduction benchmark we implemented a prototype
search tool which automatically applies the rewrite rules for finding
low-level expressions which offer high-performance. Our prototype
tool starts with the high-level expression reduce (+) 0 and transforms
the expression using the rewrite rules and performing runtime exper-

180 application studies

iments with the transformed expressions until a low-level OpenCL
expression is found meeting our performance expectations. As dis-
cussed earlier in Chapter 5 multiple rewrite rules might be valid to
be applied to a given expression, therefore, we implemented a simple
strategy for deciding which rules to apply. This simple search strategy
is loosely based on Bandit-based optimization [115].

The search is an iterative process. Given an expression we list all
the rewrite rules which are valid to be applied. We use a Monte
Carlo method for evaluating the potential impact of each rule by ran-
domly walking down the search tree. We execute the code generated
from the randomly chosen expressions on the parallel processor us-
ing OpenCL and measure its performance. The rule that promises the
best performance following the Monte Carlo descent is chosen and
the expression after the rule has been applied is used as the start-
ing point for the next iteration. As the rules are chosen randomly the
search process is not deterministic and different low-level expressions
can be found when applying the search multiple times.

This process is repeated until we reach an expression where there
are no rules to be applied to, or a certain depth of the search tree is
reached. In addition to selecting the rules, we also search at the same
time for parameters controlling our primitives such as the parameter
for the split n pattern. We have limited the choices for these numeri-
cal parameters to a reasonable set of appropriate values for our test
hardware.

We envision to replace this simplistic search strategy with more
advanced techniques in the future.

found expressions We performed the automatic search on all
three of our test platforms for the parallel reduction benchmark.

The best performing low-level expression found by applying our
automatic search technique are shown in Figure 6.3. The first expres-
sion (Figure 6.3a) was found on the Nvidia platform, the second ex-
pression (Figure 6.3b) on the AMD platform, and the third expression
(Figure 6.3c) on the Intel platform. We can make several important ob-
servations. The first observation is, that none of the expressions make
use of the local memory (although our systems fully support it). It is
common wisdom that using local memory on the GPU enables high
performance and in fact the tuned hand-written implementation by
Nvidia uses local memory on the GPU. However, as we will see later
in the results section, our automatically derived version is able to
perform as well without using local memory. The second key obser-
vation is, that each work-item performs a large sequential reduction
independent of all other threads, which does not require synchroniza-
tion and, thus, avoids overheads.

While these observations are the same for all platforms, there are
also crucial differences between the different low-level expressions.

6.2 parallel reduction 181

(a) Nvidia
1 reduce ◦ join ◦ join ◦map-workgroup

(
2 toGlobal (map-local (reduce-seq (+) 0)) ◦ reorder-stride 2048
3

)
◦ split 128 ◦ split 2048

(b) AMD

1 reduce ◦ join ◦ asScalar ◦ join ◦map-workgroup
(

2 map-local
(
map-seq (vectorize 2 id)◦

3 reduce-seq (vectorize 2 (+) 0)
4

)
◦ reorder-stride 2048

5

)
◦ split 128 ◦ asVector 2 ◦ split 4096

(c) Intel
1 reduce ◦ join ◦map-workgroup

(
join ◦ asScalar ◦map-local(

2 map-seq (vectorize 4 id) ◦ reduce-seq (vectorize 4 (+)) 0
3) ◦ asVector 4 ◦ split 32768

)
◦ split 32768

Figure 6.3: Low-level expressions performing parallel reduction. These ex-
pressions are automatically derived by our prototype search tool
from the high-level expression reduce (+) 0.

Both GPU expressions make use of the reorder-stride primitive, al-
lowing for coalesced memory accesses. The AMD and Intel expres-
sions are vectorized with a vector length of two and four respectively.
The Nvidia version does not use vectorization since this platform
does not benefit from vectorized code. On the CPU, the automatic
search picked numbers for partitioning into work-groups and then
into work-items in such a way that inside each work-group only a
single work-item is active. This reflects the fact that there is less par-
allelism available on a CPU compared to GPUs.

Interestingly, the results of our search have some redundancies
in the expressions. For example, we perform unnecessary copies on
AMD and Intel by performing a map-seq with the identity nested in-
side. While this does not seem to affect performance much, a better
search strategy could probably get rid of these artifacts and might
achieve a slightly better performance.

performance of found expressions Figure 6.4 shows the
performance of the code generated for the three expressions perform-
ing a parallel reduction shown in Figure 6.3. The three plots show the
performance for the Nvidia platform (on the left), the AMD platform
(in the middle), and the Intel platform (on the right). All plots are
scaled according to the hardware bandwidth limit of the platform. On
each platform we compare against a vendor provided, highly tuned
implementation of the BLAS library, where we measured the band-
width achieved for the asum application. While in the asum applica-
tion an additional operation (applying the absolute value function)
is performed for every data item, we showed in Section 4.3 that the
performance difference for the parallel reduction benchmark and the

182 application studies

Hardware Bandwidth Limit

0

50

100

150

Generated CUBLAS

B
an

dw
id

th
 (

G
B

/s
)

Hardware Bandwidth Limit

0

100

200

Generated clBLAS

Hardware Bandwidth Limit

0

10

20

Generated MKL

Figure 6.4: Performance comparisons for code generated for three automat-
ically found low-level expressions against hardware-specific li-
brary code on three platforms.

asum benchmark is negligible when both are implemented properly.
Therefore, we consider the BLAS implementations as valid contenders
for a fair performance comparison.

The results shows that the generated code for the automatically
found expressions are on par with the CUBLAS implementation of
Nvidia and the clBLAS implementation of AMD achieving about 95%
of their performance. On the Intel platform our generated code ac-
tually outperforms the MKL implementation. This is due to the im-
plementation of MKL and the particular multi-core CPU used in the
experiments. For the asum benchmark the MKL implementation does
not use thread level parallelism, presumably with the assumption
that asum is a memory bound benchmark. The used multi-core CPU
is actually a two socket machine where two chips are combined on a
single motherboard. In this configuration there are two memory con-
trollers available – one for each socket. Therefore, thread level paral-
lelism is actual beneficial for the asum benchmark on this particular
hardware giving our generated code a speedup of 1.67.

The three plots together also show that our approach offers true
performance portability. While each individual BLAS implementation
is not-portable and bound to a specific hardware architecture, our sys-
tem automatically searched and found three expressions systemati-
cally derived from a single high-level representation which offer high
performance on all three platforms. With our approach we achieve
the same relative performance on all platforms which is within 75%
of the corresponding hardware bandwidth limit.

search efficiency We now investigate the efficiency of our sim-
ple search strategy. Figure 6.5 shows how many expressions were
evaluated during the search. The evaluated expressions are grouped

6.2 parallel reduction 183

●
●●●

●●

●

●

●●●
●●

●

●

●

●

●●●●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●●

●

●●●●

●
●

●

●

●

●

●

●

●●

●●

0 10 20 30 40 50 60 70

0
20

40
60

80
12

0

Number of evaluated expressions

A
bs

ol
ut

e
pe

rf
or

m
an

ce
 in

 G
B

/s

(a) Nvidia GPU

●

●

●●

●●●
●
●

●
●●

●

●
●●

●

●●

●●

●

●●●●●●●

●●

●
●

●

●●●

●●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80

0
50

10
0

15
0

20
0

Number of evaluated expressions

A
bs

ol
ut

e
pe

rf
or

m
an

ce
 in

 G
B

/s

(b) AMD GPU

●●●●
●●

●

●

●●

●
●

●●

●●●

●

●●●

●
●

●●●●●●

●●

●●●●

●

●
●●●

●●●●
●

●●●

●

●●

●
●●●

●●

●

●

●

●●
●●

●
●

●●●●

●
●

●●
●●

●

●●●

●

●

●●●

●

●

●●●●●

●

●●

●

●

●

●

●●

●

●

●●
●●

●

●

●

●●

●
●●

●

●

●
●
●●

●

●●

●

●

●
●

●

0 20 40 60 80 100 120

0
5

10
15

Number of evaluated expressions

A
bs

ol
ut

e
pe

rf
or

m
an

ce
 in

 G
B

/s

(c) Intel CPU

Figure 6.5: Search efficiency. The vertical partitioning represents the number
of fixed derivations in the search tree. The red line connects the
fastest expressions found so far.

184 application studies

from left to right by the number of rules applied in the search tree.
The red line connects the fastest expression found so far.

As can be seen the performance improves steadily for all three plat-
forms before reaching a plateau. For both GPUs the best performance
is reached after testing about 40 expressions. At this point we have
fixed five derivations and found a subtree offering good performance
for some expressions. Nevertheless, even in the later stages of the
search many expressions offer poor performance, which is mainly
due to the sensitivity of GPUs for selecting appropriate numerical
parameters. On the CPU performance converges after testing about
20 expressions and more expressions offer good performance. This
shows that for this particular benchmark the CPU is easier to opti-
mize for and not as sensitive when selecting numerical parameters.
Overall the search took less than one hours on each platform.

These results show, that applying our rules automatically is feasi-
ble and capable of finding high performing low-level expressions for
high-level expressions written by the programmer. Our approach of-
fers true performance portability where the portable high-level ex-
pression is systematically and automatically optimized for a particu-
lar hardware architecture delivering similar relative performance on
all tested devices. Nevertheless, we only tested our simple automatic
search strategy with the parallel reduction as a single benchmark.
For more complex applications the search space becomes bigger and
more advanced search techniques have to be applied. We intend to
explore this topic in the future, as we will discuss in more detail in
Section 7.3.

6.3 linear algebra applications

In this section we evaluate four linear algebra applications: scaling
a vector with a constant (scal), summing up the absolute values of
a vector (asum), computing the dot product of two vectors (dot),
and performing a matrix vector multiplication (gemv). We have per-
formed experiments with two input sizes. For scal, asum and dot,
the small input size corresponds to a vector size of 64MB. The large
input size uses 512MB (the maximum OpenCL buffer size for our
platforms). For gemv, we use an input matrix of 4096×4096 elements
(64MB) and a vector size of 4096 elements (16KB) for the small input
size. For the large input size, the matrix size is 8192×16384 elements
(512MB) and the vector size 8192 elements (32KB).

We choose linear algebra kernels as benchmarks, because they are
well known, easy to understand, and used as building blocks in many
other applications. Listing 6.1 shows how the benchmarks are ex-
pressed using our high-level patterns. While the first three bench-
marks perform computations on vectors, matrix vector multiplication
illustrates a computation using 2D data structures.

6.3 linear algebra applications 185

1 scal α xs = map (λ x. α× x) xs

2 asum xs = reduce (+) 0 (map abs xs)

3 dot xs ys = reduce (+) 0 (map (×) (zip xs ys))

4 gemv mat xs ys α β =

map (+)
(
zip (map (scal α ◦ dot xs) mat) (scal β ys)

)
Listing 6.1: Linear algebra kernels from the BLAS library expressed using

our high-level algorithmic patterns.

For scaling (line 1), the map pattern is used for multiply each ele-
ment with a constant α. The sum of absolute values (line 2) and the
dot product (line 3) applications both perform a summation, which
we express using the reduce pattern customized with the addition. For
dot product, a pair-wise multiplication is performed before applying
the reduction expressed using the zip and map patterns.

The line 4 shows matrix vector multiplication as defined in BLAS:
~y = αA~x+β~y. To multiply the matrixmatwith the vector xs, the map
pattern maps the computation of the dot-product with the input vec-
tor xs to each row of the matrix mat. Afterwards the resulting vector
is added to the scaled vector ys using the zip and map patterns. No-
tice how we are reusing the expressions for dot-product and scaling
as building blocks for the more complex matrix-vector multiplication.
This shows one strength of our system: expressions describing algo-
rithmic concepts can be reused, without committing to a particular
low-level implementation. The dot-product from gemv may be imple-
mented in a totally different way from the stand-alone dot-product.

6.3.1 Comparison vs. Portable Implementation

First, we show how our approach performs across our three test
platforms. We use the BLAS OpenCL implementations written by
AMD [150] as our baseline for this evaluation since it is implemented
in OpenCL and functionally portable across all test platforms. Fig-
ure 6.6 shows the performance of our approach relative to clBLAS for
our four benchmarks. As can be seen, we achieve better performance
than clBLAS on most platforms and benchmarks. The speedups are
the highest for the CPU, with up to 20×. The reason is that clBLAS
was written and tuned specifically for an AMD GPU which usually
exhibit a larger number of parallel processing units as CPUs. Our
systematically derived expression for this benchmark is tuned for
the CPU avoiding too much parallelism, which is what gives us such
large speedup.

186 application studies

0

1

2

3

4
20 8.5 4.5

small large small large small large small large
scal asum dot gemv

S
p
e
e
d
u
p

Nvidia GPU AMD GPU Intel CPU

Figure 6.6: Performance of our approach relative to a portable OpenCL ref-
erence implementation (clBLAS).

6.3.2 Comparison vs. Highly-tuned Implementations

We compare our approach with a state-of-the-art implementation for
each platform. For Nvidia, we pick the highly tuned CUBLAS imple-
mentation of BLAS written by Nvidia [43]. For the AMD GPU, we use
the same clBLAS implementation as before because it has been writ-
ten and tuned specifically for AMD GPUs. Finally, for the CPU we use
the Math Kernel Library (MKL) [93] implementation of BLAS written
by Intel, which is known for its high performance.

Figure 6.7a shows that the code generated by our approach matches
the performance of CUBLAS for scal, asum and dot on the Nvidia
GPU. For gemv we outperform CUBLAS on the small size by 20%
while we are within 5% for the large input size. Given that CUBLAS
is a proprietary library highly tuned for Nvidia GPUs, these results
show that our technique is able to achieve high performance.

On the AMD GPU, we are surprisingly up to 4.5× faster than the
clBLAS implementation on gemv small input size as shown in Fig-
ure 6.7b. The reason for this is the way how clBLAS is implemented:
clBLAS generates the OpenCL code using fixed templates and in con-
trast to our approach, only one implementation is generated since
they do not explore different pattern compositions.

For the Intel CPU (Figure 6.7c), our approach beats MKL for one
benchmark and matches the performance of MKL on most of the
other three benchmarks. For the small input sizes on the scal and dot
benchmarks we are within 13% and 30% respectively. For the larger
input sizes, we are on par with MKL for both benchmarks. The asum
implementation in the MKL does not use thread-level parallelism,
while our implementation does and, thereby, achieves a speedup of
up to 1.78 on the larger input size.

6.3 linear algebra applications 187

0

1

2

small large small large small large small large

scal asum dot gemv

S
p

e
e

d
u

p
 o

ve
r

C
U

B
L

A
S

CUBLAS Generated

(a) Nvidia GPU

0

1

2
4.5 3.1

small large small large small large small large

scal asum dot gemv

S
p

e
e

d
u

p
 o

ve
r

c
lB

L
A

S

clBLAS Generated

(b) AMD GPU

0

1

2

small large small large small large small large

scal asum dot gemv

S
p

e
e

d
u

p
 o

ve
r

M
K

L

MKL Generated

(c) Intel CPU

Figure 6.7: Performance comparison with state-of-the-art, platform-specific
libraries: CUBLAS for Nvidia, clBLAS for AMD, MKL for Intel.
Our approach matches the performance on all three platforms
and outperforms clBLAS in some cases.

188 application studies

6.4 molecular dynamics physics application

The molecular dynamics (MD) application is a physics simulation
taken from the SHOC [46] benchmark suite. It calculates the sum of
all forces acting on a particle from its neighbors. Listing 6.2 shows the
implementation using our high-level patterns.

The function updateF (line 1) updates the force f influencing parti-
cle p by computing and adding the force between particle p and one
of its neighbors. Using the neighbor’s index nId and the vector stor-
ing all particles ps, the neighboring particle is accessed (line 2) and
the distance between the particle p and its neighbor n is computed
(line 3). If the distance is below threshold t, the force between the two
particles is calculated and added to the overall force f (line 4). If the
distance is above the threshold, the force is not updated (line 5).

For computing the force for all particles ps, we use the zip pat-
tern (line 9) to build a vector of pairs, where each pair combines a
single particle with the indices of all of its neighboring particles (p
and ns in line 7). The function which is applied to each pair by the
map pattern in line 7 is expressed as a lambda expression. Comput-
ing the resulting force exerted by all the neighbors on one particle is
done by applying the reduce-seq pattern on the vector ns storing the
neighboring indices. We use function updateF inside the reduction
to compute the force for each particle with index nId and add it to
the overall force on p.

We use lambda expressions for binding of additional information
as arguments to functions. This example shows that our patterns can
be used to implement not only simple benchmark applications.

We performed measurements with an input size of 12288 particles
for all three test platforms. The results are shown in Figure 6.8a. We
can see that the automatically generated OpenCL code performs very
close to the native OpenCL implementation and is even slightly faster
on the Intel CPU.

1 updateF f nId p ps t =
2 let n = ps[nId]
3 let d = calculateDistance p n
4 if (d < t) f+ (calculateForce d)
5 else f
6

7 md ps nbhs t = map
(
λ p,ns.

8 reduce-seq (λ f,nId. updateF f nId p ps t) 0 ns
9

)
(zip ps nbhs)

Listing 6.2: Molecular dynamics physics application expressed using our
high-level algorithmic patterns.

6.5 mathematical finance application 189

0.0

0.5

1.0

1.5

Nvidia GPU AMD GPU Intel CPU

S
pe

ed
up

OpenCL Generated

(a) Molecular Dynamics

0.0

0.5

1.0

1.5

2.0

2.5

Nvidia GPU AMD GPU Intel CPU

S
pe

ed
up

OpenCL Generated

(b) BlackScholes

Figure 6.8: Performance of our approach relative to portable OpenCL imple-
mentations of the MD and BlackScholes benchmarks.

6.5 mathematical finance application

The BlackScholes application uses a Monte Carlo method for option
pricing and computes for each stock price s a pair of call and put op-
tions. Listing 6.3 shows the BlackScholes implementation, where the
function defined in line 1 computes the call and put option for a sin-
gle stock price s. Two intermediate results d1 (line 2) and d2 (line 3)
are computed and used to compute the two options, which are re-
turned as a single pair (line 4). In line 6 the BSComputation function
is applied to all stock prices (stored in the vector stockPrices) using
the map pattern.

Figure 6.8b shows the result compared to an OpenCL implemen-
tation of the BlackScholes model provided by Nvidia as part of their
software development kit [121]. We measured the runtime on all three
test platforms for a problem size of 4 million stock prices. We see that
our approach is on par with the performance of the Nvidia imple-
mentation on both GPUs. On the CPU, we actually achieve a 2.2×
speedup due to the fact that the Nvidia implementation is tuned for
GPUs while our implementation generates different code for the CPU.

1 BSComputation s =
2 let d1 = compD1 s
3 let d2 = compD2 d1 s
4 (compCallOption d1 d2 s, comPutOption d1 d2 s)
5

6 blackScholes stockPrices = map BSComputation stockPrices

Listing 6.3: BlackScholes mathematical finance application expressed using
our high-level algorithmic patterns.

190 application studies

6.6 conclusion

In this chapter we have evaluated the code generation approach in-
troduced in Chapter 5. We have seen that our approach successfully
addresses the performance portability challenge and generates code
which achieves high performance on three distinct hardware plat-
forms: a Nvidia GPU, an AMD GPU, and an Intel CPU. Furthermore,
the comparison against the highly tuned BLAS libraries shows that
our code generator can produce highly efficient code for high-level
expressions by systematically transforming them into low-level ex-
pressions before compilation.

We have successfully addressed a drawback of SkelCL which we
could not use for implementing an efficient implementation of the
asum and the dot product benchmarks. The performance of the code
generated by our novel code generation technique is comparable to
the best implementations available, as our code generation approach
fuses patterns and generates efficient kernels for these two bench-
marks.

Finally, we presented a prototype tool which automatically applies
the rewrite rules and was able to find implementations with high
performance for the parallel reduction on all three tested platforms.
The found expressions were significantly different from the imple-
mentations developed by Nvidia, but still achieved high performance
exploiting 75% of the available hardware bandwidth on Nvidia’s and
AMD’s GPUs as well as on Intel’s CPU.

This concludes the two main technical parts of the thesis. In the
next part we will summaries our work and contributions, discuss
how the two presented projects relate to each other and how they can
be combined and improved in the future. Finally, we will conclude
the thesis with a comparison against related work.

Part IV

S U M M A RY &
C O N C L U S I O N

7T O WA R D S A H O L I S T I C S Y S T E M AT I C
A P P R O A C H F O R P R O G R A M M I N G A N D
O P T I M I Z I N G P R O G R A M S

The two previous technical parts have addresses the two
main challenges we identified at the beginning: programma-
bility and performance portability. In this chapter we will

summarize SkelCL– the high-level programming model introduced
in Part II which addresses the programmability challenge, and the
novel pattern-based code generation technique introduced in Part III
which addresses the performance portability challenge. We will espe-
cially refer back to the four main contributions of this thesis as stated
in Chapter 1. Furthermore, we will describe how the two presented
approaches relate to each other and how they can be combined in
the future for creating a holistic systematic approach for program-
ming and optimizing programs for many-core processors offering
SkelCL’s high-level abstractions and integration in C++ together with
the portable and high performance provided by our code generator
technique.

7.1 addressing the programmability challenge

In Part II of this thesis, we introduced SkelCL which addresses the
programmability challenge of modern parallel processors.

the skelcl programming model In Chapter 3 we used a case
study to show the drawbacks of programming with the state-of-the-
art low-level programming approach OpenCL. The SkelCL program-
ming model provides three high-level features which help to over-
come these drawbacks, raise the level of abstraction for the program-
mer and, thus, simplify parallel programming:

• parallel container data types (explained in detail in Section 3.2.1)
help to automate the low-level memory management as their
data is transparently accessible to both CPU and GPUs;

• algorithmic skeletons (explained in detail in Section 3.2.2) are
used for easily expressing parallel programs in a structured,
high-level manner;

• data distribution and redistribution mechanisms (explained in
detail in Section 3.2.3) greatly simplify programming of multi-

193

194 towards a holistic systematic programming approach

GPU systems by transparently performing all necessary data
transfers.

The SkelCL programming model is implemented as a C++ library
(explained in detail in Section 3.3), deeply integrated with features
from the latest C++ standard.

In Chapter 4 we showed that the SkelCL programming model and
its implementation as a C++ library are suitable for implementing
real-world applications from a broad range of domains. For all inves-
tigated examples we showed that the programming is greatly simpli-
fied with shorter and easier to understand code. The SkelCL library
offers competitive performance to manually written OpenCL code on
single- and multi-GPU systems for all but two benchmarks. For these
two benchmarks (dot product and asum) multiple OpenCL kernels are
executed instead of a single fused one. The code generation technique
presented in Part III overcomes this drawback of SkelCL.

The SkelCL programming model and its implementation is the first
major contribution of this thesis.

algorithmic skeletons for stencil and allpairs Along-
side SkelCL we introduced two novel algorithmic skeletons. The sten-
cil skeleton (explained in detail in Section 3.2.4.1) simplifies stencil
computations common in domains like image processing. The allpairs
skeleton (explained in detail in Section 3.2.4.3) allows programmers
to easily express allpairs computations like matrix multiplication. We
formally define both skeleton and provide efficient single- and multi-
GPU implementations. For the allpairs skeleton we identified in Sec-
tion 3.2.4.3 an optimization rule, which enables an optimized imple-
mentation especially beneficial on modern GPUs.

The evaluation for matrix multiplication (Section 4.4) shows the
competitive performance of the provided implementation of the all-
pairs skeleton compared to highly tuned library code. We discussed
performance results for the implementations of the stencil skeleton
for image processing applications in Section 4.5 and a physics simu-
lation in Section 4.7. These results show that similar performance is
achieved as compared with manually tuned low-level OpenCL code.
For both skeletons the evaluation shows that programming is greatly
simplified and not only the boilerplate management code is avoided
but GPU specific optimizations, like the usage of local memory, are
performed hidden from the user.

The formal definitions and efficient GPU implementations of the
stencil and allpairs skeletons is the second major contribution of this
thesis.

7.2 addressing the performance portability challenge 195

7.2 addressing the performance portability

challenge

In Part III of this thesis we introduced a novel code generation tech-
nique which addresses the performance portability challenge.

a formal system for rewriting pattern-based programs

We started Chapter 5 with an investigation into the portability of op-
timization using the low-level programming approach OpenCL and
showed that optimizations in OpenCL are not performance portable.
In the following we introduced a set of high-level and low-level
patterns (explained in detail in Section 5.3) together with provably
correct rewrite rules (explained in detail in Section 5.4). While the
high-level patterns capture algorithmic concepts, very similar to the
algorithmic skeletons used in SkelCL, the low-level patterns model
specific features of the target low-level programming model OpenCL.
The rewrite rules encode high-level algorithmic choices, as well as
low-level optimizations which can be systematically applied to a
pattern-based program. Especially, the rewrite rules explain how the
high-level algorithmic concepts can be mapped to OpenCL, our target
low-level programming model.

We show the soundness of the system by giving formal definitions
of the semantics and types of each pattern and proving for each
rewrite rule that it does not change the semantic of the rewritten
expression. In Section 5.4.3 we showed how the rewrite rules can be
systematically applied for deriving differently optimized, hardware-
specific low-level expressions from a single high-level representation.

This formal foundation makes our rewrite approach suitable for
automating the optimization of code in a compiler and is the third
major contribution of this thesis.

a code generator offering performance portability

Based on the formal foundations, we developed and presented the
design and implementation of a code generator (explained in de-
tail in Section 5.5) which generates highly efficient, hardware-specific
OpenCL code for different target platforms from a single pattern-
based expression. The single high-level representation is transformed
into a hardware-specific low-level representation using the rewrite
rules, as shown in Section 5.4.3. The low-level representation is then
compiled to efficient OpenCL code. Our implementation employs a
powerful type system encoding information about the size of arrays
used for static memory allocation. We use type inference for infer-
ring most types automatically to free the programmer from specify-
ing types explicitly.

Our performance evaluation in Chapter 6 shows that using this
novel approach, OpenCL code is generated which performs compa-

196 towards a holistic systematic programming approach

rable to manually optimized library codes on three different parallel
processors. This novel code generation approach offers true perfor-
mance portability, since hardware-specific code is systematically gen-
erated from a single, portable high-level representation.

This code generator offering true performance portability is the
fourth, and final, major contribution of this thesis.

7.3 future work :
towards a holistic systematic approach for

programming and optimizing programs

The two separate approaches described in this thesis can naturally
be combined in the future to obtain a single holistic approach which
offers the advantages of both: the high-level abstractions from SkelCL
which structure and simplify parallel programming as well as the
highly optimized and portable performance delivered systematically
by our novel code generation technique.

This combination makes sense as both approaches use structured
parallel programming in the form of parallel patterns (or algorithmic
skeletons as they are called in SkelCL) as their fundamental build-
ing block. In SkelCL the patterns are used by the programmer to
describe the algorithmic structure of the program. In the code gen-
erator rewrite rules transform programs expressed with patterns into
a low-level form from which efficient OpenCL code is generated.

As shown in Part II the SkelCL programming model provides a
great programming interface successfully hiding complicated details
of parallelism and the underlying hardware from the programmer.
But the current implementation as a C++ library has some restric-
tions in certain areas, even somewhat limiting the expressiveness of
the programming model. For example, the nesting of patterns is not
supported in a library implementation. Furthermore, when evaluat-
ing SkelCL in Chapter 4 we identified a performance problem for two
benchmarks because the current SkelCL library implementation does
generate a separate OpenCL kernel for each pattern instead of gener-
ating a single fused kernel. The current library is optimized towards
and tested on GPUs by Nvidia and does not necessary offer the same
level of performance on other hardware platforms.

As shown in Part III, our code generator addresses these perfor-
mance drawbacks of the SkelCL library implementation, systemati-
cally generating highly efficient code on three hardware platforms.
However, currently the high-level and low-level patterns from Chap-
ter 5 are not well integrated in a programming language like the
SkelCL library is integrated in C++. This restricts the expressiveness
and makes it difficult to implement complex real-world applications
like the LM OSEM expressed in SkelCL as shown in Section 4.6.

7.3 future work 197

A future holistic approach will avoid all of these drawbacks by
using SkelCL as the frontend offering to the user its convenient pro-
gramming interface integrated with the C++ programming language,
combined with the code generator as the backend systematically com-
piling the pattern-based expressions into hardware-specific code.

In the following we will discuss possible future enhancements to
SkelCL as well as the code generator.

7.3.1 Enhancing the SkelCL Programming Model

In this section we explore possible enhancements to the SkelCL pro-
graming model, as well as discuss current limitations of the C++ li-
brary implementation and how those could be liftet in the future.
We start with the Stencil skeleton and how its implementation could
be enhanced to improve its usability. We then discuss possible en-
hancements to lift the limitations regarding composing and nesting of
SkelCL’s skeletons and container data types. Next we discuss the pos-
sibility to extend SkelCL by supporting more algorithmic skeletons,
especially, task-parallel skeletons for enhancing its expressiveness. Fi-
nally, we discuss how SkelCL could be extended for supporting truly
heterogeneous execution where different types of parallel processors,
e. g., CPU and GPU, are used efficiently together.

enhancing the stencil skeleton In SkelCL we introduced a
new algorithmic skeleton for Stencil computations (Section 3.2.4.1). In
Section 3.3.4.5 we discussed two implementations – MapOverlap and
Stencil. Each implementation has its advantages and disadvantages
regarding usability, expressiveness, and performance.

To improve the usability, the shape of the stencil could be inferred
automatically from the customizing function instead of requiring the
user to provide this information explicitly as it is currently the case.

To improve the expressiveness, more options for performing
boundary handling could be added allowing more application to be
easily expressed with the skeleton. Furthermore, many simulations
could be expressed with the stencil skeleton if application-specific
functions would be allowed for checking a terminating condition
when performing stencil computations iteratively.

To improve the performance, the decision which implementation,
MapOverlap or Stencil, to use in which situation could be taken
automatically by the SkelCL implementation. A performance model
predicting the runtime of each implementation in a certain situation
could be built reflecting the performance characteristics of both im-
plementations. Based on this model the runtime system could select
the appropriate implementation for a given use case of the stencil
skeleton.

198 towards a holistic systematic programming approach

optimizing data transfer The memory management is com-
pletely hidden from the user in SkelCL. Data stored in SkelCL’s con-
tainer data types is made automatically accessible on CPU and GPUs.
Currently SkelCL performs a single data transfer in OpenCL to copy
a container’s data to or from a GPU. When the data transfer time
is large compared to the computational time it is often beneficial to
upload the data in several chunks and start the computation on the
first chunk while simultaneously uploading the next chunk. Using
this strategy the data transfer can be overlapped with the computa-
tional time and the overall runtime is reduced. This optimization is
not always valid as it must be possible to compute several chunks in-
dependent of each other. Fortunately, for the map and zip skeleton this
is always true, therefore, this optimization could be added to SkelCL
while preserving its completely transparent memory management.

allow nesting of skeletons and container data types

Due to SkelCL’s current implementation, the nesting of skeletons
is not allowed in the library, therefore, it is not possible to express
nested parallelism. Similarly, it is not possible to nest container
data types in each other. SkelCL provides a special two-dimensional
data type, but there is no generic mechanism for building higher-
dimensional data types.

Both drawbacks are limitations given by the current library imple-
mentation. A skeleton is directly translated into an OpenCL kernel,
preventing the nesting of skeletons. The container implementation
assumes a flat representation of the data in memory, which is not
necessarily the case when nesting containers.

By empowering SkelCL’s implementation with our code generation
technique we can overcome both drawbacks in the future. Nesting of
computations expressed as skeletons as well as data in the form of ar-
rays is fully supported by our current code generator. By integrating
this implementation in SkelCL, nested parallelism can be exploited
where OpenCL kernels and matching appropriate data representa-
tions are generated automatically.

adding support for task-parallel skeletons SkelCL cur-
rently focuses on data-parallel skeletons as they match the perfor-
mance characteristics of modern GPU systems. Nevertheless, it could
be useful to explore the introduction of task-parallel skeletons to
SkelCL. The well-known pipeline skeleton could, for example, be use-
ful for systematically optimizing the data transfer to and from GPUs
by overlapping computation and communication. The pipeline skele-
ton could also be used in a multi-GPU setting where each GPU per-
forms a different stage of the pipeline. Similarly, a task farm skeleton
could be used to schedule different, possibly data-parallel, computa-
tions across multiple GPUs.

7.3 future work 199

adding support for truly heterogeneous execution

SkelCL uses OpenCL for its implementation, therefore, it is possible
to use SkelCL not only for programming GPUs but also other types
of accelerators and multi-core CPUs. As we showed in Part III, the
performance of OpenCL is not portable across this broad range of
parallel processors. Therefore, the current implementation of SkelCL
would presumably not perform particular well on other types of par-
allel processors supported by OpenCL. Furthermore, in a system com-
prising multiple OpenCL devices SkelCL currently assumes that all
device roughly process the data in an equal amount of time when dis-
tributing the data across the devices. This means that SkelCL’s block
distribution divides the input data into equally sized chunks, each
processed by a different OpenCL device. This assumption works well
for homogeneous multi-GPU systems as used in this thesis, but breaks
down for truly heterogeneous execution where multiple parallel pro-
cessors of different types are used together.

The code generation technique presented in Part III will address the
first drawback and generate efficient and performance portable code
for each single OpenCL device. More research has to be conducted for
performing efficient execution on heterogeneous systems. The struc-
tured manner in which programs are expressed with SkelCL could
help to address this issue, as researchers have already build perfor-
mance models for structured programming [8, 19, 47, 84, 142] predict-
ing runtime performance. Such models could be used for minimizing
the overall runtime by most efficiently using all available hardware
resources.

7.3.2 Enhancing the Pattern-Based Code Generator

This section discusses possible enhancements to our novel pattern-
based code generator. Firstly, we discuss how the proposed rewrite
rules can be efficiently applied automatically and how this will enable
compilers to perform the advanced optimizations discussed through-
out the thesis autonomously without any user interaction. We will
then describe possible enhancements to the current OpenCL backend,
before we explore the possibility to add additional backends pro-
ducing efficient code in other low-level programming system, e. g.,
OpenMP or MPI. Finally, we will discuss how the current system can
easily be extended with additional high-level patterns and rewrite
rules.

automatically applying of the rewrite rules The for-
malism and implementation presented in this thesis constitute the
foundational work necessary to systematically rewrite pattern-based
expressions with the aim to apply optimizations beneficial for a given
hardware platform. By applying the rewrite rules a design space of

200 towards a holistic systematic programming approach

possible implementations is built for a program represented with a
corresponding high-level pattern-based expression. The formalism in-
troduced in Chapter 5 ensures that the rewrite rules can safely be ap-
plied, as they do not change the programs semantics. This makes the
rewrite rules suitable for automation inside a compiler.

In Section 6.2.1 we discussed a preliminary search tool used for de-
termining which implementations in the large (and in fact unbound)
design space offer good performance for the simple reduction bench-
mark. This tool builds and searches the tree of possible implementa-
tions by applying all possible rules at one level of the tree and then
sampling their subtrees randomly applying rules until an expression
is found for which OpenCL code can be executed. These expressions
are then executed and their performance is measured. The perfor-
mance results are used to decide which subtree should be further
investigated by starting the same process again. We showed that even
this rather simplistic and unguided technique was able to find highly
efficient implementations on three different hardware architectures
for the simple benchmark we investigated.

In future work a more sophisticated search technique should be
developed to search the implementation space more efficiently and
possibly even to give guarantees on the quality of the found expres-
sion. Two possible techniques can be used here which have already
been applied in similar contexts: formal performance models and ad-
vanced machine learning techniques.

Formal performance models try to model the performance of pro-
grams without executing the program. Such models are usually built
by experts encoding specific semantic knowledge and have shown
promising results especially for structured programming approaches,
like algorithmic skeletons [8, 47, 84], where precise observations can
be made about the generic program structure instead of being lim-
ited to observations about concrete applications which cannot be eas-
ily generalized. In our setting, performance models could be created
to estimate the performance of a given pattern-based expression and
then used to guide the automatic application of rewrite rules, by esti-
mating the benefit of applying the rule. If multiple rewrite rules are
valid, the particular rule would be chosen for which the performance
model predicts the larges performance benefit.

Machine learning techniques [20] aim to automatically derive mod-
els by learning from experience gathered during either a dedicated
learning phase (offline learning) or by iteratively improving an ex-
isting model (online learning). Such a model could then be used to
guide the rewrite process, similar to a manually constructed formal
performance model. Machine learning is a broad field and many re-
lated techniques have been proposed to enable different forms of the
generic idea. Furthermore, machine learning has been already suc-
cessfully applied in the context of optimizing compilers [58] and au-

7.3 future work 201

totuning [39]. In our context, a device-specific model could be trained
using experimental evaluation on a set of training applications using
a similar technique as our preliminary one presented in Section 6.2.1.
Such a model would have to be built only once for each particular
parallel processor and could afterwards be used to guide the rewrite
processes for arbitrary applications being executed on the same pro-
cessor. In our structured parallel programming approach, different
applications are still expressed with the same foundational building
blocks, such that performance characteristics learned from one appli-
cation should be applicable for other applications.

This topic is surely one of the most interesting, but also most chal-
lenging areas of future work.

enhance the current opencl backend As seen in Chap-
ter 6, the current OpenCL backend implementation already offers
portable high performance. Nevertheless, the backend could be fur-
ther improved in the future. We discuss two enhancements to give an
idea on possible future work in this area.

Adding support for more advanced vectorization techniques could
be one future enhancement, as currently only simple arithmetic func-
tions without any control flow can be automatically vectorized by
our implementation. Dedicated tools vectorizing entire functions [98]
could be combined and integrated into our backend to overcome this
limitation.

The current memory allocation is rather basic and not optimized
for space usage. Therefore, currently more intermediate buffers are
allocated then necessary. We intend to use well-known compiler tech-
niques, like graph coloring [118] usually used in register allocation,
for improving the current allocation strategy. We also plan to add sup-
port for the private and constant memory regions defined in OpenCL,
as we currently only support the global and local memory.

adding additional backends In this thesis, we based our for-
malism and implementation on the OpenCL standard. The same idea
of high-level and low-level patterns bridged with rewrite rules could
be applied to other low-level programming models as well. For exam-
ple, it is possible following the same methodology to design a back-
end targeting MPI for distributed systems. While the high-level algo-
rithmic patterns and the algorithmic rewrite rules are independent of
the target programming model, the low-level hardware patterns and
backend-specific rules are not. This design was chosen deliberately to
achieve a clear separation of concern between the high-level program-
ming interface as well as algorithmic optimizations and the low-level
hardware-specific programming approach with device-specific opti-
mizations.

202 towards a holistic systematic programming approach

An additional backend would, therefore, add low-level patterns de-
scribing the low-level target programming model in a structured and
functional style using patterns. Furthermore, a set of rewrite rules has
to be defined for lowering the high-level algorithmic concepts to ap-
propriate low-level patterns and for expressing optimization choices
in the low-level target programming approach. For MPI, patterns re-
flecting the distributed nature of the programming model would be
added, e. g., a mapNode pattern for assigning work to a node in the
distributed system. Similarly, novel rewrite rules could explain when
it is possible to use collective operations, like broadcast, to optimize
the data transfer.

One could even imagine, to combine multiple dedicated backends,
e. g., the MPI-backend and the OpenCL-backend, to leverage the exist-
ing patterns and rules in a different setting, like a large scale hetero-
geneous cluster environment found in modern supercomputers.

adding additional high-level patterns and

algorithmic rewrite rules By design we started our code
generation technique with a limited set of parallel patterns which
cannot express all applications. By restricting ourself to this well un-
derstood set of pattern we are able to systematically generate portable
and highly efficient code.

The current set of high-level algorithmic patterns and rewrite rules
is powerful enough to express the benchmarks discussed in Chapter 6.
Furthermore, the supported patterns allow already to express other
higher level abstractions, like for example, the allpairs skeleton from
SkelCL, which can be expressed by nesting two map pattern in each
other. Nevertheless, by adding more high-level patterns and rules in
the future, e. g., to support stencil applications, we will increase the
expressiveness of our approach and make it more attractive to poten-
tial users.

8C O M PA R I S O N W I T H R E L AT E D W O R K

In this final chapter we compare the approaches presented in
this thesis with related work.

8.1 related work

Here we will discuss related projects which also aim to simplify par-
allel programming in general or programming of GPU systems in par-
ticular. We also include projects aiming at performance portability, as
our approach does. We will start by looking at algorithmic skeleton
libraries in general and then focus on more recent projects targeting
GPU systems, like SkelCL does. Next, we will cover other structured
parallel programming approaches, including the well-known MapRe-
duce framework. We will then discuss the broad range of GPU pro-
gramming approaches proposed in recent years, before looking at
domain-specific approaches, including projects with particular focus
on stencil computations. We will end with a discussion of related
projects using rewrite rules for program optimizations.

For all projects we make clear how they relate to our work.

8.1.1 Algorithmic Skeleton Libraries

Numerous algorithmic skeleton libraries have been proposed since
the introduction of algorithmic skeletons in the late 1980s [36]. A good
and extensive overview reflecting the state of the art at the time when
the work on this thesis was started in 2010 can be found in [72]. We
will discuss here some representative examples of algorithmic skele-
ton libraries targeting different types of computer architectures.

Prominent algorithmic skeleton libraries targeting distributed sys-
tems are Muesli [103] and eSkel [37] which are both implemented us-
ing MPI [117]. There has also been work especially dedicated towards
grids [8, 9] leading to the development of the Higher Order Components
(HOC) [60, 61] which are implemented in Java.

Skeleton libraries for multi-core CPUs include Skandium [108] which
uses Java threads, FastFlow [4, 5] which is implemented in C++ and
has recently be extended towards distributed systems as well [3], and
an extended version of Muesli [35] which uses OpenMP [127].

Of particular relevance for our comparison are the following recent
skeleton libraries targeting GPU systems.

203

204 comparison with related work

Muesli [65] and FastFlow [7, 25] have been extended for GPU sys-
tems using CUDA. Both libraries implemented support for execu-
tion of their data-parallel skeletons on GPU hardware, but not for
their task-parallel skeletons. In Muesli data-parallel skeletons can be
nested in task-parallel skeletons, but not the other way around. This
type of nesting is also supported when the data-parallel skeleton is
executed on a GPU. The data management between CPU and GPU
is performed implicitly and automatically as it is the case for SkelCL,
but different to our implementation data is transfered back to the CPU
after each skeleton execution on the GPU. This makes the integration
with the existing infrastructure in Muesli and FastFlow easier but ob-
viously limits performance when multiple skeletons are executed on
the GPU.

SkePU [48, 49, 64] is a skeleton library implemented in C++ and
specifically targeted towards GPU systems, similar to SkelCL. Both
approaches have been developed independently but implement very
similar concepts and even a similar set of data-parallel algorithmic
skeletons. Nevertheless, both projects have emphasis on different ar-
eas and are implemented in different ways. SkePU implements mul-
tiple backends for targeting different hardware devices. Currently,
there exist an OpenMP backend for multi-core CPUs, OpenCL and
CUDA backends for GPUs, and separate backends written in OpenCL
and CUDA for multi-GPU execution.

The approach of developing multiple backends is contradictory to
the idea of code and performance portability advocated in this thesis.
SkelCL uses only a single OpenCL backend which could be combined
in the future with our novel compiler technique to optimize code for
different platforms.

Recently SkePU has implemented a similar scheme as SkelCL for
managing data transfers [49], by using a lazy copying strategy which
SkelCL does since its first implementation. SkePU now supports an
automatic overlap of data transfer with computations, which is cur-
rently not supported in SkelCL.

A version of SkePU integrated with the StarPU runtime system [16]
allows for hybrid CPU and GPU execution with a dynamic load bal-
ancing system provided by StarPU. Furthermore, SkePU allows to
specify execution plans which determine the backend to be used for
a particular data size of the problem, e. g., the OpenMP backend for
small data size and the CUDA multi-GPU backend for larger data
sizes. While SkelCL also fully support the execution on multi-core
CPUs, single GPUs, and multi-GPU systems, we have currently no
comparable mechanism to determine which hardware should be used
for different data sizes.

SkelCL introduces data distributions to give users control over the
execution in multi-GPU systems. SkePU does not offer such a fea-
ture and always splits the data across GPUs, therefore, complicated

8.1 related work 205

multi-GPU applications like the LM OSEM presented and evaluated
in Chapter 4 are not easy to implement in SkePU.

JPAI [69] is a recent skeleton library for seamless programming of
GPU systems using Java. JPAI offers an object-oriented API which
makes use of the new Java lambda expressions. At runtime before
execution on the GPU the customizing functions of the skeletons are
compiled to OpenCL using the Graal [59] compiler and virtual ma-
chine. There is currently no support for multi-GPU systems, as there
is in SkelCL.

8.1.2 Other Structured Parallel Programming Approaches

There are other projects advocating structured parallel programming,
even though they identify themselves not necessary as algorithmic
skeleton libraries.

Delite [24, 29, 107] is a framework for building domain-specific
languages which automatically exploit parallelism. To achieve this,
Delite offers a set of basic parallel operators, very similar to algorith-
mic skeletons, which can be used as fundamental building blocks by
the designer of a domain-specific language. The domain-specific lan-
guage is compiled by Delite where C++ code is generated for multi-
core CPUs and CUDA code for GPUs. For performing the compilation
Delite uses Lightweight Modular Staging (LMS) [135] – a runtime code
generation approach implemented as a library in the Scala program-
ming language [122, 123]. LMS exploits the rich type system of Scala
to give fine grained control over which expressions should be evalu-
ated in Scala at compile time and for which expressions code should
be generated. Neither Delite nor LMS address the performance porta-
bility issue we identified in this thesis and address with our novel
compilation technique.

MapReduce [51] is a programming model advocated to simplify the
programming of applications processing large amounts of data. Often
these applications run inside of data centers, the cloud, or other pos-
sibly large scale distributed systems. Computations are divided into
two steps called map and reduce. In the map step a user provided
function is applied to each data item, usually represented as a key-
value pair, in a possibly large collection of data. After the map step
all matching values with the same key are grouped together and then
in the reduce step all values for a given key can be aggregated by a
second user provided function. These concepts are closely related to
algorithmic skeletons, even though a slightly different terminology is
used and only computations fitting this one computational pattern
can be expressed. Lämmel discusses extensively MapReduce from
a functional programming perspective and explores its foundations

206 comparison with related work

in skeletal programming [104]. The generic algorithmic skeleton ap-
proach discussed in this thesis allows for implementing a broad range
of applications, as shown in Chapter 4 and Chapter 6, and is not fixed
to one particular application domain as MapReduce is.

Since its introduction MapReduce has found widespread use and
several projects providing implementations on different architectures
have been presented. The most prominent example is Hadoop [13] – an
open source implementation in Java targeting cluster systems. Other
work has targeted single- and multi-GPU systems [66, 144].

Threading Building Blocks (TBB) [134] is a software library developed
by Intel. TBB offers parallel patterns, like parallel_for or paral-
lel_reduce, as well as concurrent data structures, including concur-
rent_queue, concurrent_vector, and concurrent_hash_map. TBB can
be used for programming Intel’s multi-core CPUs and has recently
been enabled for the Xeon Phi accelerators as well. In a separate
book [113] three authors from Intel discuss how TBB, among other
technologies advocated by Intel, can be used for structured parallel
programming. The C++ Extensions for Parallelism [26] is a set of pro-
posed extensions to the C++ standard adding parallel algorithms, sim-
ilar to algorithmic skeletons, to C++. TBB as well as existing skeleton
libraries, including SkelCL, could implement the proposed specifica-
tion in the future and, thus, conform to a unified and standardized
programming interface.

SkelCL currently is not optimized for multi-core CPUs as TBB is.
When combined with our novel compilation approach, SkelCL will
aim for generating highly efficient code for multi-core CPUs in the
future as well.

8.1.3 Related GPU Programming Approaches

We already discussed some closely related approaches which can be
used for program GPU systems, including SkePU, Muesli, FastFlow,
and JPAI. Here we are going to discuss additional approaches which
are especially targeted towards GPU programming.

Thrust [17] and Bolt [22] are C++ libraries developed by Nvidia and
AMD respectively for simplify the programming of their GPUs. Both
libraries offer a similar set of parallel patterns and interfaces similar
to TBB and SkelCL. Thrust is implemented using CUDA and Bolt uses
OpenCL, as SkelCL does. For data management both libraries offer
separate data structures for the CPU and GPU. The programmer has
explicit control, but also the additional burden, to move data between
CPU and GPU. This is different to SkelCL’s implementation where
a unified data structure is provided which automatically and lazily
manages the data transfers in the system.

8.1 related work 207

Currently, neither Thrust nor Bolt support multi-GPU execution. In
SkelCL multi-GPU support is a key feature built into the program-
ming model with the support of data distributions giving program-
mers control over how the GPUs in the system should be used.

Obsidian [146, 147] is a project for performing GPU programming
using the functional programming language Haskell [91]. GPU code
is generated from expressions written in a domain specific language
embedded in Haskell. Obsidian offers low-level primitives to the pro-
grammer for achieving competitive performance with manually writ-
ten CUDA code.

Accelerate [30, 114] is also a domain specific languages for data-
parallel programming embedded in Haskell. Accelerate makes use
of Obsidian for generating GPU code and offers a higher level inter-
face to the programmer than Obsidian does. Parallel combinators, like
map, fold, or scan, are used to express programs at the algorithmic
level. This is very similar to how functional programmers usually pro-
gram in ordinary, sequential Haskell. This is also similar to our skele-
ton library SkelCL, but the use of Haskell makes Accelerate hard to
use for programmers coming from more traditional imperative and
object-oriented languages like C and C++. Furthermore, SkelCL has
specific features, like the support of additional arguments, which en-
hance the flexibility in which it is used, allowing to efficiently imple-
ment real-world examples, e. g., the LM OSEM application discussed
in Chapter 4.

Accelerate uses high-level optimizations [114] for fusing multiple
skeleton executions into a single one – an optimization technique
known as deforestation [154] in the functional community. This is dif-
ferent from SkelCL which always generates an OpenCL kernel for
each skeleton. Therefore, Accelerate is able to generate efficient code
for benchmarks where SkelCL performs poorly, including asum and
the dot product. As discussed in Chapter 7, we intend to address this
drawback of SkelCL in the future by incorporating our novel compi-
lation technique which is able to perform this type of optimization as
well. Furthermore, Accelerate generates CUDA code specialized for
Nvidia GPUs and its implementation is not portable across architec-
tures, as our compilation technique is.

Hijma et al. presents a stepwise-refinement methodology for pro-
gramming GPUs and Intel Xeon Phi accelerators [86]. Programs are
written using a foreach statement which allows parallel execution. By
combining the program with a separate hardware description a com-
piler generates code for GPUs and accelerators. Using traditional com-
piler analysis the compiler provides feedback to the user on which
part to focus the optimization efforts. The proposed system allows
the user to stay at an abstract portable level or to decide to optimize

208 comparison with related work

for a particular hardware architecture and lose portability. The pre-
sented results report substantial performance benefits comparing a
high-level unoptimized implementation versus a non-portable imple-
mentation optimized for a particular hardware.

Using this approach the programmer is still performing the diffi-
cult optimizations manually, requiring detailed hardware knowledge.
This is different using our compilation technique, where the compiler
is empowered to perform advanced optimizations without user inter-
action. Furthermore, our approach does not force the user to choose
between performance and portability, which is still required in this
work.

Many projects following the tradition of OpenMP [127] working
with annotations of sequential code have been proposed for GPU pro-
gramming as well. Directives are used by the programmer to annotate
sequential code, usually loops, which can be executed in parallel. A
compiler supporting them reads the directives and generates parallel
code automatically.

Early projects generating GPU code include HMPP [54], the PGI
Accelerator Compilers (PGI has since been acquired by Nvidia), and
hiCUDA [81]. All these projects contributed into a new unified stan-
dard called OpenACC [149].

OmpSs [62, 63] is a project using directives with a particular fo-
cus on task parallelism. Sequential code can be declared as a task
via annotations and dependencies between tasks are specified by the
programmer as well. A runtime system can exploit parallelism by exe-
cuting independent tasks simultaneously. Data-parallel computations
can also be executed on GPUs using OpenCL [63]. OmpSs influenced
the development of the latest standard of OpenMP 4.0 [127] which
now also includes directives for offloading computations to GPUs.

In OpenACC and OpenMP 4.0 directives for specifying the parallel
computation in loops are provided as well as directives for explicitly
specifying the data regions involved in the computation. After each
computation data is copied back to the CPU and many GPU features
can currently not be exploited with this approach, e. g., the usage of
local memory. SkelCL as well as our code generation technique fully
exploit all features provided by GPUs which are crucial for achiev-
ing high performance. All these approaches using directives promise
minimal source code change for existing sequential code. SkelCL re-
quires programmers to express their programs in a well structured
way using algorithmic skeletons, which might force programmers to
reimplement parts of their programs. We consider this actually a ben-
efit of SkelCL, as restructuring the code using skeletons will likely
increase its maintainability.

8.1 related work 209

Many new programming languages have been proposed for GPU
programming as well. Some existing programming languages have
been extended to support GPU programming directly from the lan-
guage without the need of specific libraries, including IBM’s X10 lan-
guage [148].

HiDP [161] is a language for expressing hierarchical data-parallel
programs. Fundamental data-parallel building blocks like map are
pre-defined in the language and used by programmers. Patterns can
be nested, where this is not possible in SkelCL but fully supported in
our novel compilation technique.

LiquidMetal [89] is a research project by IBM to support the pro-
gramming of heterogeneous systems comprised of different hardware
in a single programming language called Lime [15]. Support for pro-
gramming GPU systems has recently been added [57]. Lime supports
task-parallelism with the creation of tasks which can communicate
with each other. Data-parallelism is also supported with skeleton-like
patterns, including map and reduce.

Single Assignment C (SAC) [78] is a functional programming lan-
guage supporting GPU programming by compiling SAC programs to
CUDA [79]. The compiler automatically detects loops which can be
offloaded to the GPU, generates the necessary CUDA code and per-
forms the data management automatically. SAC has a special loop
(with-loop) which is guaranteed to be free of dependencies, similar
to SkelCL’s map skeleton.

Copperhead [28] is a GPU language embedded in the Python pro-
gramming language offering data-parallel primitives, including map,
reduce, and scan. Nesting of patterns is supported and nested par-
allelism is statically mapped to the GPU thread hierarchy by the
compiler and can be controlled via compiler switches. Currently, no
systematic mechanism exists for exploring different mapping strate-
gies. Our code generation approach allows to systematically explore
different implementation strategies, including different mappings of
nested data parallelism to the hardware.

NOVA [40] is a recent functional GPU programming language de-
veloped at Nvidia. It is intended to be used as an intermediate lan-
guage produced by a domain specific programming interface. Pro-
grams are implemented in a Lisp-style notation where function ap-
plication is written using prefix notation. Built-in parallel operations
include map, reduce, and scan. Different to our approach fixed imple-
mentations of these patterns are used which are manually optimized
for Nvidias GPUs.

210 comparison with related work

Finally, Petabricks [12] allows the programmer to specify a range of
valid implementations for a given problem. The programmer thereby
specifies an implementation space the Petabricks compiler and run-
time explores using autotuning strategies. The two main concepts
are transforms which are functions which can be transformed by the
Petrabricks compiler and rules which describe a possible way for per-
forming the computation. By specifying multiple alternative rules the
compiler is free to choose which one to apply at a given point in the
program. Recent work has enabled the generation of GPU code as
well [128].

Different to our code generation approach for tackling performance
portability, Petabricks relies on static analysis for optimizing the gen-
erated code. Furthermore, the responsibility for specifying algorith-
mic choices is on the application programmer implementing a specific
algorithm, whereas in our approach the algorithmic choices are de-
fined and captured in the rewrite rules and then applied to the high-
level code written by the programmer. Therefore, in our approach the
algorithmic choices can be seen as implicit, or hidden from the user,
while in Petabricks they are explicit to the programmer.

All these programming languages take a very different approach
than SkelCL does by requiring programmers to learn a new language
and reimplement their entire application in the new language. Inter-
facing code written in one of these new languages with legacy code is
often complicated, whereas it is straightforward and easy when using
SkelCL, because it is implemented as an ordinary C++ library.

8.1.4 Related Domain Specific Approaches for Stencil Computations

In this thesis we introduced two novel algorithmic skeletons, among
them the stencil skeleton. Here we will discuss related work on do-
main specific approaches focused on stencil computations and the
related domain of image processing. All these approaches are, by
design, focused on one particular domain of applications, whereas
SkelCL and our compilation technique are much more general.

PATUS [33] is a code generation and autotuning framework for sten-
cil computations. The stencil computation is expressed in a domain
specific language and separated from the execution strategy which
is also written by the programmer in a second domain specific lan-
guage but independent of the stencil executed. The PATUS compiler
combines a stencil and a strategy to generate OpenCL code. PATUS
focuses on single-GPU performance and does not support multi-GPU
systems as SkelCL does. An autotuning component is used to experi-
mentally determine and optimize implementation parameters and to
choose the best execution strategy.

8.1 related work 211

Different execution strategies can be used on different architectures
to achieve some degree of performance portability, as the application-
specific stencil code does not change. Our novel code generation ap-
proach goes further, where different implementation strategies are
systematically derived from a single high-level expression and not
picked from a limited set of manually written execution strategies.

PARTANS [110] is a software framework for stencil computations
implemented in C++ with a focus on autotuning of stencil applica-
tions for multi-GPU systems. Stencils are expressed using a C++API
in a style similar to our SkelCL C++ implementation of the stencil
skeleton formally defined in this thesis. Autotuning is applied to de-
termine the best parameters in the implementation. PARTANS pays
particular attention to the communication in multi-GPU systems and
detects different PCIe layouts which affect the data transfer rates be-
tween different GPUs in the system.

Overall PARTANS is much more focused on optimizing the commu-
nication in a multi-GPU system than SkelCL is and does not consider
particular optimizations on single GPUs nor does it formally define
skeleton computations as an algorithmic skeleton as this thesis does.

Impala [102] is a domain specific language developed at Saarland
University for supporting stencil applications. Similar to the LMS
project discussed earlier, code is generated at runtime and it can be
precisely specified which part of the computation is executed at com-
pile time and which part is executed in parallel by the GPU. This
technique allows, for example, to generate GPU code where runtime
checks for the boarder handling can be limited to the particular mem-
ory areas where boarder handling is actually required and avoided
elsewhere.

Halide [131, 132] is a programming language for image processing
applications. Halide is a purely functional language where a function
producing an image is implemented by defining the computation per-
formed to produce a single pixel. This function can be applied in dif-
ferent ways to produces the entire image, e. g., sequentially or in par-
allel. As applications are organized in a pipeline processing images
in multiple stages, there is also the possibility to exploit pipeline par-
allelism. The decision how the functions are executed in Halide are
defined in a schedule independent of the individual image processing
operations performed.

Autotuning is used for automatically searching for good sched-
ules [132]. Different from PATUS, Halide can automatically generate
schedules, but they are restricted to image processing applications,
e. g., assuming that pipelining is always possible. Our code genera-
tion approach is more general and can be applied to other types of
application domains as well.

212 comparison with related work

8.1.5 Related Approaches using Rewrite Rules

There has been related work on using rewrite rules for program opti-
mizations, especially from a functional programming background.

The Bird-Meertens formalism [18] used as our notation in this the-
sis already defines equations which allow to transform programs at
an algorithmic level. [73] shows a detailed case study of this tech-
nique. Targeting distributed systems, formal rules have been pro-
posed for optimizing collective operations in message passing sys-
tems [74, 75, 77]. For the functional programming language Haskell,
[97] discusses how rewriting can be used as an optimization tech-
nique and how the Glasgow Haskell Compiler (GHC) [90] supports
the definition of rewrite rules.

Our rewrite rules can be seen in the same tradition as this work.

Spiral [124, 130, 140] is a project aiming at generating highly ef-
ficient code for signal processing applications and related domains.
Rules are used to systematically describe domain specific transforma-
tions which are applied automatically by the compiler. Spiral special-
izes the generated code depending on the input problem size and
achieves high performance using this technique. First focused on sig-
nal processing applications [130], Spiral has since been extended to
generate code for linear algebra applications as well [140].

In contrast, our code generation technique systematically describes
hardware optimizations of the OpenCL programming model and our
approach is not domain specific as Spiral is, where the framework
has to be re engineered for supporting a new application domain.

A P P E N D I X

213

AC O R R E C T N E S S O F R E W R I T E R U L E S

This appendix present the proofs which show that the rewrite rules
presented in Section 5.4 do not change the semantics of pattern-based
programs.

a.1 algorithmic rules

This section shows the proofs for the algorithmic rules defined in
Section 5.4.1.

identity We repeat Equation (5.1) here:

f → f ◦map id | map id ◦ f

Proof of option 1. Let xs = [x1, . . . , xn].

(f ◦map id) xs = f (map id xs)

{definition of map} {definition of id}

= f ([id x1, id x2, . . . , id xn]) = f xs

Proof of option 2. Let xs = [x1, . . . , xn].

(map id ◦ f) xs = map id (f xs)

{definition of map}

= [id (f xs)1, id (f xs)2, . . . , id (f xs)n]

{definition of id}

= f xs

iterate decomposition We repeat Equation (5.2) here:

iterate 1 f → f

iterate (m+n) f → iterate m f ◦ iterate n f

Proof of option 1.

{definition of iterate} {definition of iterate}

iterate 1 f xs = iterate (1− 1) f (f xs) = f xs

215

216 correctness of rewrite rules

Proof of option 2. Proof by induction. We start with the base case, let
n = 0:

{definition of iterate}

iterate (m+ 0) f xs = iterate m f (iterate 0 f xs)

{definition of iterate}

= (iterate m f ◦ iterate 0 f) xs

We finish with the induction step n− 1→ n:

{definition of iterate}

iterate (m+n) f xs = iterate (m+n− 1) f (f xs)

{induction hypothesis}

= (iterate m f ◦ iterate (n− 1) f)(f xs)

{definition of ◦}
= iterate m f (iterate (n− 1) f (f xs))

{definition of iterate}

= iterate m f (iterate n f xs)

{definition of ◦}
= (iterate m f ◦ iterate n f) xs

reorder commutativity We repeat Equation (5.3) here:

map f ◦ reorder → reorder ◦map f

reorder ◦map f → map f ◦ reorder

Proof. We start with the expression map f ◦ reorder.
Let xs = [x1, . . . , xn].

(map f ◦ reorder) xs = map f (reorder xs)

{definition of reorder}

= map f [xσ(1), . . . , xσ(n)]

{definition of map}

= [f xσ(1), . . . , f xσ(n)]

A.1 algorithmic rules 217

Now we investigate the expression reorder ◦map f:

(reorder ◦map f) xs = reorder (map f xs)

{definition of map}

= reorder [f x1, . . . , f xn]

= reorder [y1, . . . ,yn] with yi = f xi
{definition of reorder}

= [yσ(1), . . . ,yσ(n)]

{definition of yi}

= [f xσ(1), . . . , f xσ(n)]

As both expression we started with can be simplified to the same
expression they have the same semantics, therefore, both options of
the rule are correct.

split-join We repeat Equation (5.4) here:

map f → join ◦map (map f) ◦ split n

Proof. We start from the right-hand side and show the equality of
both sides. Let xs = [x1, . . . , xm].

(join ◦map (map f) ◦ split n) xs = join (map (map f) (split n xs))

{definition of split}

= join (map (map f) [[x1, . . . , xn], . . . , [xm−n+1, . . . , xm]])

{definition of map}

= join [map f [x1, . . . , xn], . . . , map f [xm−n+1, . . . , xm]]

{definition of map}

= join [[f x1, . . . , f xn], . . . , [f xm−n+1, . . . , f xm]]

{definition of join}

= [f x1, . . . , . . . , f xm]

{definition of map}

= map f xs

reduction We repeat Equation (5.5) here:

reduce (⊕) id⊕ → reduce (⊕) id⊕ ◦ part-red (⊕) id⊕

218 correctness of rewrite rules

Proof. We start from the right-hand side and show the equality of
both sides. Let xs = [x1, . . . , xm].

(reduce (⊕) id⊕ ◦ part-red (⊕) id⊕ n) xs
= reduce (⊕) id⊕ (part-red (⊕) id⊕ n xs)
{definition of part-red}

= reduce (⊕) id⊕
[xσ(1) ⊕ · · · ⊕ xσ(n), . . . , xσ(m−n+1) ⊕ · · · ⊕ xσ(m)]

{definition of reduce}

= [(xσ(1) ⊕ · · · ⊕ xσ(n))⊕ · · · ⊕ (xσ(m−n+1) ⊕ · · · ⊕ xσ(m))]

{commutativity & accociativity of ⊕}
= [x1 ⊕ · · · ⊕ xm]

{definition of reduce}

= reduce (⊕) id⊕ xs

partial reduction We repeat Equation (5.6) here:

part-red (⊕) id⊕ n

→ reduce (⊕) id⊕
| part-red (⊕) id⊕ n ◦ reorder

| joinm ◦map (part-red (⊕) id⊕ n) ◦ split m

| iterate logm(n) (part-red (⊕) id⊕ m)

Proof of option 1. Let xs = [x1, . . . , xm]. Since the rules can only be
valid if their types matches it must hold n = m.

(part-red (⊕) id⊕ m) [x1, . . . , xm]

{definition of part-red}

= [xσ(1) ⊕ · · · ⊕ xσ(m)]

{commutativity of ⊕} {definition of reduce}

= [x1 ⊕ · · · ⊕ xm] = reduce (⊕) id⊕ xs

A.1 algorithmic rules 219

Proof of option 2. Let xs = [x1, . . . , xm]

part-red (⊕) id⊕ n xs

{definition of part-red}

= [xσ(1) ⊕ · · · ⊕ xσ(n), . . . , xσ(m−n+1) ⊕ · · · ⊕ xσ(m)]

{represent permutation σ with appropiate permutations σ ′, σ ′′}

=
[
xσ ′(σ ′′(1)) ⊕ · · · ⊕ xσ ′(σ ′′(n)), . . . ,
xσ ′(σ ′′(m−n+1)) ⊕ · · · ⊕ xσ ′(σ ′′(m))

]
{definition of part-red}

= part-red (⊕) id⊕ n [xσ ′′(1), . . . , xσ ′′(m)]

{definition of reorder}

= part-red (⊕) id⊕ n (reorder xs)

= (part-red (⊕) id⊕ n ◦ reorder) xs

220 correctness of rewrite rules

Proof of option 3. Let xs = [x1, . . . , xl].

part-red (⊕) id⊕ n xs

{definition of part-red}

= [xσ(1) ⊕ · · · ⊕ xσ(n), . . . , xσ(l−n+1) ⊕ · · · ⊕ xσ(l)]
{represent permutation σ with appropiate permutations σi}

=
[
xσ1(1) ⊕ · · · ⊕ xσ1(n), . . . ,
xσ1(m−n+1) ⊕ · · · ⊕ xσ1(m),

. . . ,

xσl/m(l−m+1) ⊕ · · · ⊕ xσl/m(l−m+n+1), . . . ,

xσl/m(l−n+1) ⊕ · · · ⊕ xσl/m(l)

]
{definition of joinm}

= joinm
[

[xσ1(1) ⊕ · · · ⊕ xσ1(n),
. . . ,

xσ1(m−n+1) ⊕ · · · ⊕ xσ1(m)],

. . . ,

[xσl/m(l−m+1) ⊕ · · · ⊕ xσl/m(l−m+n+1),

. . . ,

xσl/m(l−n+1) ⊕ · · · ⊕ xσl/m(l)]
]

{definition of part-red}

= joinm
[

part-red (⊕) id⊕ n [x1, . . . , xm],

. . . ,

part-red (⊕) id⊕ n [xl−m+1+, . . . , xl]
]

{definition of map}

= joinm
(
map (part-red (⊕) id⊕ n)[

[x1, . . . , xm], . . . , [xl−m+1+, . . . , xl]
])

{definition of split}

= joinm
(
map (part-red (⊕) id⊕ n) (split m xs)

)
= (joinm ◦map (part-red (⊕) id⊕ n) ◦ split m) xs

A.1 algorithmic rules 221

Proof of option 4. We will proof the following obvious equivalent re-
formulation of the rule:

part-red (⊕) id⊕ nm → iterate m (part-red (⊕) id⊕ n)

Proof by induction. We start with the base case, let m = 0.

part-red (⊕) id⊕ n0 xs = part-red (⊕) id⊕ 1 xs

{definition of part-red}

= xs

{definition of iterate}

= iterate 0 (part-red (⊕) id⊕ n) xs

The induction step (m− 1)→ m. Let xs = [x1, . . . , xl].

part-red (⊕) id⊕ nm xs

{definition of part-red}

= [xσ(1) ⊕ · · · ⊕ xσ(nm), . . . , xσ(l−nm+1) ⊕ · · · ⊕ xσ(l)]
{accociativity of ⊕}
= [y1 ⊕ · · · ⊕ y(nm−1), . . . ,y(l/n−(nm−1)) ⊕ · · · ⊕ y(l/n)]

where yi = (xσ((i−1)×n+1) ⊕ · · · ⊕ xσ(i×n))
= part-red (⊕) id⊕ n(m−1) [y1, . . . ,yl/n]

{definition of yi}

= part-red (⊕) id⊕ n(m−1)

[xσ(1) ⊕ · · · ⊕ xσ(n), . . . , xσ(l−n+1) ⊕ · · · ⊕ xσ(l)]
{induction hypothesis}

= iterate (m− 1) (part-red (⊕) id⊕ n)

[xσ(1) ⊕ · · · ⊕ xσ(n), . . . , xσ(l−n+1) ⊕ · · · ⊕ xσ(l)]
{definition of part-red}

= iterate (m− 1) (part-red (⊕) id⊕ n)

(part-red (⊕) id⊕ n xs)

{definition of iterate}

= iterate m (part-red (⊕) id⊕ n) xs

222 correctness of rewrite rules

simplification rules We repeat Equation (5.7) here:

joinn ◦ split n → id

split n ◦ joinn → id

asScalarn ◦ asVector n → id

asVector n ◦ asScalarn → id

Proof of option 1. Let xs = [x1, . . . , xm].

(joinn ◦ split n) xs = joinn (split n xs)

{definition of split}

= joinn
[
[x1, . . . , xn], . . . , [xm−n+1, . . . , xm]

]
{definition of join}

= xs

Proof of option 2. Let xs =
[
[x1, . . . , xn], . . . , [xm−n+1, . . . , xm]

]
.

(split n ◦ joinn) xs = split n (joinn xs)

{definition of join}

= split n [x1, . . . , xm]

{definition of split}

= xs

Proof of option 3. Let xs = [x1, . . . , xm].

(asScalarn ◦ asVector n) xs = asScalarn (asVector n xs)

{definition of asVector}

= asScalarn [{x1, . . . , xn}, . . . , {xm−n+1, . . . , xm}]

{definition of asScalar}

= xs

Proof of option 4. Let xs = [{x1, . . . , xn}, . . . , {xm−n+1, . . . , xm}].

(asVector n ◦ asScalarn) xs = asVector n (asScalarn xs)

{definition of asScalar}

= asVector n [x1, . . . , xm]

{definition of asVector}

= xs

A.1 algorithmic rules 223

fusion rules We repeat Equation (5.8) here:

map f ◦map g → map (f ◦ g)
reduce-seq (⊕) id⊕ ◦map f →

reduce-seq
(
λ (a,b) .a⊕ (f b)

)
id⊕

Proof of option 1. Let xs = [x1, . . . , xn].

(map f ◦map g) xs = map f (map g xs)

{definition of map}

= map f [g x1, . . . ,g xn]

{definition of map}

= [f (g x1), . . . , f (g xn)]

{definition of ◦}
= [(f ◦ g) x1, . . . , (f ◦ g) xn]
{definition of map}

= map(f ◦ g) xs

Proof of option 2. Let xs = [x1, . . . , xn].

(reduce-seq (⊕) id⊕ ◦map f) xs

= reduce-seq (⊕) id⊕ (map f xs)

{definition of map}

= reduce-seq (⊕) id⊕ [f x1, f x2, . . . , f xn]

{definition of reduce-seq}

= [(. . . ((id⊕ ⊕ (f x1))⊕ (f x2)) · · · ⊕ (f xn))]

= [(. . . ((id⊕ � x1)� x2) · · · � xn)]
where (�) = λ (a,b) . a⊕ (f b)

{definition of reduce-seq}

= reduce-seq (�) id⊕ xs

{definition of �}
= reduce-seq

(
λ (a,b) . a⊕ (f b)

)
id⊕ xs

224 correctness of rewrite rules

a.2 opencl-specific rules

This section shows the proofs for the OpenCL-specific rules defined
in Section 5.4.2.

maps We repeat Equation (5.9) here:

map → map-workgroup | map-local

| map-global | map-warp

| map-lane | map-seq

Proof. All of the options in this rule are correct by definition, as all
map patterns share the same execution semantics.

reduction We repeat Equation (5.10) here:

reduce (⊕) id⊕ → reduce-seq (⊕) id⊕

Proof. Let xs = [x1, . . . , xn].

{definition of reduce}

reduce (⊕) id⊕ xs = x1 ⊕ · · · ⊕ xn
{associativity of ⊕ & identity of id⊕}

= (. . . ((id⊕ ⊕ x1)⊕ x2) · · · ⊕ xn)
{definition of reduce-seq}

= reduce-seq (⊕) id⊕ xs

reorder We repeat Equation (5.11) here:

reorder → id | reorder-stride s

Proof of option 1. Let xs = [x1, . . . , xn].

reorder xs = [xσ(1), . . . , xσ(n)]

{choose σ as the identity permutation}⇒
[xσ(1), . . . , xσ(n)] = [x1, . . . , xn] = id xs

Proof of option 2. The definition of reorder-stride is as follows:

reorder-stride s [x1, . . . , xm] = [y1, . . . ,ym]

where yi = x(i−1) div n+s×((i−1) mod n)+1

A.2 opencl-specific rules 225

We can express the relationship between ys and xs as a function σ
with: xσ(i) = yi, i. e., σ(i) = ((i− 1) div n+ s× ((i− 1) mod n) + 1.
We want to show that σ is a permutation of the interval [1,m], so
that σ is a valid choice when rewriting reduce. We show the σ is a
permutation by proving that σ is a bijective function mapping indices
from the interval [1,m] in the same interval.

First we show the injectivity, by showing:

∀i, j ∈ [1,m] with i 6= j ⇒ σ(i) 6= σ(j)

Let us assume without loss of generality that i < j.
As i, j ∈ [1,m] and by definition of mod and div every summand

in σ is positive. Therefore, for σ(i) = σ(j) to be true all of their cor-
responding summands have to be equal. We will show, that this can
never be the case. Let us write j as j = i+ k where 0 < k < m− 1.

If we assume: (i− 1) div n = (i+ k− 1) div n

{definition of div & mod and i, k > 0}

⇒ (i− 1) mod n 6= (i+ k− 1) mod n

{s > 0}

⇒ s× ((i− 1) mod n) 6= s× ((i+ k− 1) mod n)

⇒ ((i− 1) div n) + s× ((i− 1) mod n) + 1

6= ((j− 1) div n) + s× ((j− 1) mod n) + 1

If we assume the opposite (i− 1) mod n = (i+ k− 1) mod n:

{definition of div & mod and i,k > 0}

⇒ (i− 1) div n 6= (i+ k− 1) div n

⇒ ((i− 1) div n) + s× ((i− 1) mod n) + 1

6= ((j− 1) div n) + s× ((j− 1) mod n) + 1

This shows the injectivity of σ.

Now we show the surjectivity, by showing:

∀i ∈ [1,m] σ(i) ∈ [1,m]

We know that m = s×n

⇒ (i− 1) div n 6 s ∀i ∈ [1,m]

By definition of mod: ((i− 1) mod n) 6 (n− 1) ∀i ∈ [1,m]

⇒ ((i− 1) div n) + s× ((i− 1) mod n) 6 s+ s× (n− 1)

= s×n = m

226 correctness of rewrite rules

As already discussed is σ(i) > 0 ∀i ∈ [1,m], because of the definitions
of mod, div, and σ.

Therefore, σ is injective and surjective, thus, bijective which makes
it a well defined permutation of [1,m].

local and global memory We repeat Equation (5.12) here:

map-local f → toGlobal (map-local f)

map-local f → toLocal (map-local f)

Proof. These rules follow directly from the definition of toGlobal and
toLocal, as these have no effect on the computed value, i. e., they be-
have like the id function.

vectorization We repeat Equation (5.13) here:

map f → asScalar ◦map (vectorize n f) ◦ asVector n

Proof. Let xs = [x1, . . . , xm].

map f xs = [f x1, . . . , f xm]

{definition of asScalar}

= asScalar [{f x1, . . . , f xn}, . . . , {f xm−n+1, . . . , f xm}]

= asScalar [fn {x1, . . . , xn}, . . . , fn {xm−n+1, . . . , xm}]

where fn {x1, . . . , xn} = {f x1, . . . , f xn}

{definition of fn and vectorize}

= asScalar [(vectorize n f) {x1, . . . , xn}, . . . ,

(vectorize n f) {xm−n+1, . . . , xm}]

{definition of map}

= asScalar (map (vectorize n f)

[{x1, . . . , xn}, . . . , {xm−n+1, . . . , xm}]

{definition of asVector}

= asScalar (map (vectorize n f) (asVector n xs))

= (asScalar ◦map (vectorize n f) ◦ asVector n) xs

BD E R I VAT I O N S F O R PA R A L L E L
R E D U C T I O N

This appendix shows the derivations which transform the high-level
expression reduce (+) 0 into the low-level expressions shown in Sec-
tion 5.4.3.2. The numbers above the equality sign refer to the rules
from Figure 5.7 and Figure 5.8.

first pattern-based expression This is the derivation for the
expression shown in Listing 5.8.

vecSum = reduce (+) 0
5.7e
= reduce ◦ part-red (+) 0 128

5.7e
= reduce ◦ join ◦map (part-red (+) 0 128) ◦ split 128

5.7e
= reduce ◦ join ◦map

(
iterate 7 (part-red (+) 0 2)

)
◦ split 128

5.7e
= reduce ◦ join ◦map

(
iterate 7 (join ◦map (part-red (+) 0 2) ◦ split 2))
◦ split 128

5.7a
= reduce ◦ join ◦map

(
map id ◦
iterate 7 (join ◦map (part-red (+) 0 2) ◦ split 2) ◦
map id)
◦ split 128

5.7d
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
iterate 7 (join ◦map (part-red (+) 0 2) ◦ split 2) ◦
join ◦map (map id) ◦ split 1)
◦ split 128

5.8a
= reduce ◦ join ◦map-workgroup

(
join ◦map-local (map-seq id) ◦ split 1 ◦
iterate 7 (join ◦map-local (part-red (+) 0 2) ◦ split 2) ◦
join ◦map-local (map-seq id) ◦ split 1)
◦ split 128

227

228 derivations for parallel reduction

5.7e&5.8b
=

reduce ◦ join ◦map-workgroup
(

join ◦map-local (map-seq id) ◦ split 1 ◦
iterate 7 (join ◦map-local (reduce-seq (+) 0) ◦ split 2) ◦
join ◦map-local (map-seq id) ◦ split 1)
◦ split 128

5.8d
= reduce ◦ join ◦map-workgroup

(
join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
iterate 7 (join ◦map-local (reduce-seq (+) 0) ◦ split 2) ◦
join ◦ toLocal (map-local (map-seq id)) ◦ split 1)
◦ split 128

avoiding interleaved addressing This is the derivation for
the expression shown in Listing 5.9.

vecSum = reduce (+) 0
5.7e
= reduce ◦ part-red (+) 0 128

5.7e
= reduce ◦ join ◦map (part-red (+) 0 128) ◦ split 128

5.7e
= reduce ◦ join ◦map

(
iterate 7 (part-red (+) 0 2)

)
◦ split 128

5.7e
= reduce ◦ join ◦map

(
iterate 7 (part-red (+) 0 2 ◦ reorder)

)
◦ split 128

5.7e
= reduce ◦ join ◦map

(
iterate 7 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder))
◦ split 128

5.7a
= reduce ◦ join ◦map

(
map id ◦
iterate 7 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder) ◦
map id)
◦ split 128

5.7d
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
iterate 7 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder) ◦
join ◦map (map id) ◦ split 1)
◦ split 128

derivations for parallel reduction 229

5.8a
= reduce ◦ join ◦map-workgroup

(
join ◦map-local (map-seq id) ◦ split 1 ◦
iterate 7 (join ◦map-local (part-red (+) 0 2) ◦ split 2 ◦ reorder) ◦
join ◦map-local (map-seq id) ◦ split 1)
◦ split 128

5.7e&5.8b
=

reduce ◦ join ◦map-workgroup
(

join ◦map-local (map-seq id) ◦ split 1 ◦
iterate 7 (join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦ reorder) ◦
join ◦map-local (map-seq id) ◦ split 1)
◦ split 128

5.8c
= reduce ◦ join ◦map-workgroup

(
join ◦map-local (map-seq id) ◦ split 1 ◦
iterate 7 (λ xs . join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦

reorder-stride ((size xs)/2) $ xs) ◦
join ◦map-local (map-seq id) ◦ split 1)
◦ split 128

5.8d
= reduce ◦ join ◦map-workgroup

(
join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
iterate 7 (λ xs . join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦

reorder-stride ((size xs)/2) $ xs) ◦
◦ join ◦ toLocal (map-local (map-seq id)) ◦ split 1)
◦ split 128

increase computational intensity per work-item This
is the derivation for the expression shown in Listing 5.10.

vecSum = reduce (+) 0
5.7e
= reduce ◦ part-red (+) 0 256

5.7e
= reduce ◦ join ◦map (part-red (+) 0 256) ◦ split 256

5.7e
= reduce ◦ join ◦map

(
iterate 8 (part-red (+) 0 2)

)
◦ split 256

5.7e
= reduce ◦ join ◦map

(
iterate 8 (part-red (+) 0 2 ◦ reorder)

)
◦ split 256

5.7e
= reduce ◦ join ◦map

(
iterate 8 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder))
◦ split 256

230 derivations for parallel reduction

5.7a
= reduce ◦ join ◦map

(
map id ◦
iterate 8 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder))
◦ split 256

5.7d
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
iterate 8 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder) ◦)
◦ split 256

5.7b
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
iterate 7 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder)

join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder)
◦ split 256

5.8a
= reduce ◦ join ◦map-workgroup

(
join ◦map-local (map-seq id) ◦ split 1 ◦
iterate 7 (join ◦map-local (part-red (+) 0 2) ◦ split 2 ◦ reorder)

join ◦map-local (part-red (+) 0 2) ◦ split 2 ◦ reorder)
◦ split 256

5.7e&5.8b
=

reduce ◦ join ◦map-workgroup
(

join ◦map-local (map-seq id) ◦ split 1 ◦
iterate 7 (join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦ reorder) ◦
join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦ reorder)
◦ split 256

5.8c
= reduce ◦ join ◦map-workgroup

(
join ◦map-local (map-seq id) ◦ split 1 ◦
iterate 7 (λ xs . join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦

reorder-stride ((size xs)/2) $ xs) ◦
join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦

reorder-stride 128)
◦ split 256

5.8d
= reduce ◦ join ◦map-workgroup

(
join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
iterate 7 (λ xs . join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦

reorder-stride ((size xs)/2) $ xs) ◦
join ◦ toLocal (map-local (reduce-seq (+) 0)) ◦ split 2 ◦

reorder-stride 128)
◦ split 256

derivations for parallel reduction 231

avoid synchronization inside a warp This is the derivation
for the expression shown in Listing 5.11.

vecSum = reduce (+) 0
5.7e
= reduce ◦ part-red (+) 0 256

5.7e
= reduce ◦ join ◦map (part-red (+) 0 256) ◦ split 256

5.7e
= reduce ◦ join ◦map

(
iterate 8 (part-red (+) 0 2)

)
◦ split 256

5.7b
= reduce ◦ join ◦map

(
iterate 6 (part-red (+) 0 2) ◦
iterate 2 (part-red (+) 0 2)

)
◦ split 256

5.7e
= reduce ◦ join ◦map

(
part-red (+) 0 64 ◦ iterate 2 (part-red (+) 0 2 ◦ reorder))
◦ split 256

5.7e
= reduce ◦ join ◦map

(
part-red (+) 0 64 ◦
iterate 2 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder))
◦ split 256

5.7a
= reduce ◦ join ◦map

(
map id ◦
part-red (+) 0 64 ◦
iterate 2 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder))
◦ split 256

5.7d
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
part-red (+) 0 64 ◦
iterate 2 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder) ◦)
◦ split 256

5.7b
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
part-red (+) 0 64 ◦
iterate 1 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder)

join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder)
◦ split 256

232 derivations for parallel reduction

5.7e
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
join ◦map (part-red (+) 0 64) split 64 ◦
iterate 1 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder)

join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder)
◦ split 256

5.7e
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
join ◦map

(
iterate 6 (part-red (+) 0 2)

)
◦ split 64 ◦

iterate 1 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder)

join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder)
◦ split 256

5.7e
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
join ◦map

(
iterate 6 (part-red (+) 0 2 ◦ reorder)

)
◦ split 64 ◦

iterate 1 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder)

join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder)
◦ split 256

5.7e
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
join ◦map

(
iterate 6 (join ◦map (part-red (+) 0 2) ◦ split 2◦

reorder)
)
◦ split 64 ◦

iterate 1 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder)

join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder)
◦ split 256

5.7b
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
join ◦map

(
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder)
◦ split 64 ◦

iterate 1 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder) ◦
join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder)
◦ split 256

derivations for parallel reduction 233

5.8a & 5.7e & 5.8b & 5.8d
=

reduce ◦ join ◦map-workgroup
(

join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
join ◦map-warp (

join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 1 ◦
join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 2 ◦
join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 4 ◦
join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 8 ◦
join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 16 ◦
join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 32

) ◦ split 64 ◦
iterate 1 (λ xs . join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦

reorder-stride ((size xs)/2) $ xs) ◦
join ◦ toLocal (map-local (reduce-seq (+) 0)) ◦ split 2 ◦

reorder-stride 128)
◦ split 256

complete loop unrolling This is the derivation for the ex-
pression shown in Listing 5.12. We continue with the last expression
from the previous derivation.

vecSum = reduce (+) 0

derivation above
=

reduce ◦ join ◦map-workgroup
(

join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
join ◦map-warp (

join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 1 ◦
join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 2 ◦
join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 4 ◦
join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 8 ◦
join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 16 ◦
join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 32

) ◦ split 64 ◦
iterate 1 (λ xs . join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦

reorder-stride ((size xs)/2) $ xs) ◦
join ◦ toLocal (map-local (reduce-seq (+) 0)) ◦ split 2 ◦

reorder-stride 128)
◦ split 256

234 derivations for parallel reduction

5.7b
=

reduce ◦ join ◦map-workgroup
(

join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
join ◦map-warp (

join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 1 ◦
join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 2 ◦
join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 4 ◦
join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 8 ◦
join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 16 ◦
join ◦map-lane (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 32

) ◦ split 64 ◦
join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 64) ◦
join ◦ toLocal (map-local (reduce-seq (+) 0)) ◦ split 2 ◦

reorder-stride 128)
◦ split 256

fully optimized implementation This is the derivation for
the expression shown in Listing 5.13.

vecSum = reduce (+) 0
5.7e
= reduce ◦ part-red (+) 0 blockSize

5.7e
= reduce ◦ join ◦map (part-red (+) 0 blockSize) ◦ split blockSize

5.7e
= reduce ◦ join ◦map

(
iterate log2(blockSize) (part-red (+) 0 2))
◦ split blockSize

5.7b
= reduce ◦ join ◦map

(
iterate 7 (part-red (+) 0 2) ◦
iterate (log2(blockSize/128)) (part-red (+) 0 2))
◦ split blockSize

5.7b
= reduce ◦ join ◦map

(
iterate 6 (part-red (+) 0 2) ◦
iterate 1 (part-red (+) 0 2) ◦
iterate (log2(blockSize/128)) (part-red (+) 0 2))
◦ split blockSize

derivations for parallel reduction 235

5.7e
= reduce ◦ join ◦map

(
part-red (+) 0 64 ◦
part-red (+) 0 2 ◦
part-red (+) 0 (blockSize/128))
◦ split blockSize

5.7a
= reduce ◦ join ◦map

(
map id ◦
part-red (+) 0 64 ◦
part-red (+) 0 2 ◦
part-red (+) 0 (blockSize/128))
◦ split blockSize

5.7d
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
part-red (+) 0 64 ◦
part-red (+) 0 2 ◦
part-red (+) 0 (blockSize/128))
◦ split blockSize

5.7e
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
join ◦map (part-red (+) 0 64) split 64 ◦
part-red (+) 0 2 ◦
part-red (+) 0 (blockSize/128))
◦ split blockSize

5.7e
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
join ◦map

(
iterate 6 (part-red (+) 0 2)

)
◦ split 64 ◦

part-red (+) 0 2 ◦
part-red (+) 0 (blockSize/128))
◦ split blockSize

5.7e
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
join ◦map

(
iterate 6 (part-red (+) 0 2 ◦ reorder)

)
◦ split 64 ◦

part-red (+) 0 2 ◦
part-red (+) 0 (blockSize/128))
◦ split blockSize

236 derivations for parallel reduction

5.7e
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
join ◦map

(
iterate 6 (join ◦map (part-red (+) 0 2) ◦ split 2 ◦

reorder)
)
◦ split 64 ◦

part-red (+) 0 2 ◦
part-red (+) 0 (blockSize/128))
◦ split blockSize

5.7b
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
join ◦map

(
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder)
◦ split 64 ◦

part-red (+) 0 2 ◦
part-red (+) 0 (blockSize/128))
◦ split blockSize

5.7e
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
join ◦map

(
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder)
◦ split 64 ◦

part-red (+) 0 2 ◦ reorder ◦
part-red (+) 0 (blockSize/128) ◦ reorder)
◦ split blockSize

derivations for parallel reduction 237

5.7e
= reduce ◦ join ◦map

(
join ◦map (map id) ◦ split 1 ◦
join ◦map

(
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 2)) ◦ split 2 ◦ reorder)
◦ split 64 ◦

join ◦map (part-red (+) 0 2) ◦ split 2 ◦ reorder ◦
join ◦map (part-red (+) 0 (blockSize/128))◦
split (blockSize/128) ◦ reorder)
◦ split blockSize

5.8a & 5.7e & 5.8b & 5.8d
= reduce ◦ join ◦map-workgroup

(
join ◦ toGlobal (map-local (map-seq id)) ◦ split 1 ◦
join ◦map-warp

(
join ◦map-lane (reduce-seq (+) 0)) ◦ split 2 ◦ reorder-stride 1 ◦
join ◦map-lane (reduce-seq (+) 0)) ◦ split 2 ◦ reorder-stride 2 ◦
join ◦map-lane (reduce-seq (+) 0)) ◦ split 2 ◦ reorder-stride 4 ◦
join ◦map-lane (reduce-seq (+) 0)) ◦ split 2 ◦ reorder-stride 8 ◦
join ◦map-lane (reduce-seq (+) 0)) ◦ split 2 ◦ reorder-stride 16 ◦
join ◦map-lane (reduce-seq (+) 0)) ◦ split 2 ◦ reorder-stride 32)
◦ split 64 ◦

join ◦map-local (reduce-seq (+) 0) ◦ split 2 ◦ reorder-stride 64 ◦
join ◦ toLocal (map-local (reduce-seq (+) 0))◦
split (blockSize/128) ◦ reorder-stride 128)
◦ split blockSize

L I S T O F F I G U R E S

Figure 1.1 Development of Intel Desktop CPUs over time 5

Figure 2.1 Overview of a multi-core CPU architecture . . 12

Figure 2.2 Overview of a GPU architecture 13

Figure 2.3 The OpenCL platform and memory model . . 18

Figure 3.1 Two detectors register an event in a PET-scanner 28

Figure 3.2 Parallelization schema of the LM OSEM algo-
rithm. 30

Figure 3.3 Distributions of a vector in SkelCL. 41

Figure 3.4 Distributions of a matrix in SkelCL. 42

Figure 3.5 Visualization of the Gaussian blur stencil ap-
plication. 43

Figure 3.6 Overlap distribution of a vector and matrix in
SkelCL. 45

Figure 3.7 The allpairs computation schema. 46

Figure 3.8 Memory access pattern of the matrix multipli-
cation. 47

Figure 3.9 Overview of the SkelCL implementation. In the
first step, the custom skelclc compiler trans-
forms the initial source code into a representa-
tion where kernels are represented as strings.
In the second step, a traditional C++ compiler
generates an executable by linking against the
SkelCL library implementation and OpenCL. . 52

Figure 3.10 Implementation of the scan skeleton. 61

Figure 3.11 The MapOverlap implementation of the stencil
skeleton . 62

Figure 3.12 Stencil shape for heat simulation 64

Figure 3.13 Device synchronization for three devices dur-
ing the execution of the stencil skeleton. 66

Figure 3.14 Implementation schema of the specialized
allpairs skeleton. 69

Figure 3.15 Data distributions used for the allpairs skeleton
for a system with two GPUs. 70

Figure 4.1 Visualization of a part of the Mandelbrot set. . 77

Figure 4.2 Runtime and program size of the Mandelbrot
application. 79

Figure 4.3 Lines of code for two basic linear algebra ap-
plications . 82

239

240 LIST OF FIGURES

Figure 4.4 Runtime for two basic linear algebra applications 83

Figure 4.5 Runtime of the naïve OpenCL and SkelCL ver-
sions of asum and sum compared to CUBLAS. . 84

Figure 4.6 Visalization of matrix multiplication. 86

Figure 4.7 Programming effort of three OpenCL-based,
one CUDA-base, and two SkelCL-based matrix
multiplication implementations. 90

Figure 4.8 Runtime of different matrix multiplication im-
plementations on an Nvidia system. 91

Figure 4.9 Runtime of different matrix multiplication im-
plementations on an AMD ststem. 92

Figure 4.10 Runtime of the allpairs based matrix multipli-
cation implementations using multiple GPUs . 93

Figure 4.11 Application of the Gaussian blur to an noised
image. 94

Figure 4.12 Lines of code of different implementation of
the Gaussian blur 96

Figure 4.13 Runtime of the Gaussian blur using different
implementations. 97

Figure 4.14 Speedup of the Gaussian blur application on
up to four GPUs. 98

Figure 4.15 The Lena image before and after applying So-
bel edge detection. 98

Figure 4.16 Performance results for Sobel edge detection . 101

Figure 4.17 Runtime of the Canny edge detection algorithm. 103

Figure 4.18 Parallelization schema of the LM OSEM algo-
rithm. 105

Figure 4.19 Lines of code of the LM OSEM implementations.108

Figure 4.20 Average runtime of one iteration of the LM
OSEM algorithm. 109

Figure 4.21 A 3D representation of the inensity of the 2D
electric field as computed by the SkelCL FDTD
implementation. 111

Figure 4.22 Runtime for one iteration of the FDTD applica-
tion. 112

Figure 4.23 Relative lines of code for five application ex-
amples discussed in this chapter comparing
OpenCL code with SkelCL code. 113

Figure 4.24 Relative runtime for six application examples
discussed in this chapter comparing OpenCL-
based implementations with SkelCL-based im-
plementations. 113

Figure 5.1 Parallel Reduction in OpenCL. 119

Figure 5.2 Performance of optimized implementations of
the parallel reduction 130

LIST OF FIGURES 241

Figure 5.3 Overview of our code generation approach. . . 134

Figure 5.4 Introductory example: vector scaling. 136

Figure 5.5 The OpenCL thread hierarchy and the corre-
sponding parallel map patterns. 143

Figure 5.6 Visualization of the reorder-stride pattern 146

Figure 5.7 Overview of our algorithmic rewrite rules. . . 155

Figure 5.8 Overview of the OpenCL-specific rewrite rules. 158

Figure 5.9 Derivation of asum to a fused parallel version . 165

Figure 6.1 Three low-level expressions implementing par-
allel reduction. 178

Figure 6.2 Performance comparisons for code generated
for three low-level expressions against native
OpenCL code. 179

Figure 6.3 Low-level expressions performing parallel re-
duction. These expressions are automatically
derived by our prototype search tool from a
high-level expression 181

Figure 6.4 Performance comparisons for code generated
for three automatically found low-level expres-
sions against hardware-specific library code on
three platforms. 182

Figure 6.5 Search efficiency of our prototype search tool . 183

Figure 6.6 Performance of our approach relative to a
portable OpenCL reference implementation . . 186

Figure 6.7 Performance comparison with state-of-the-art,
platform-specific libraries 187

Figure 6.8 Performance of our approach relative to na-
tive OpenCL implementations of the MD and
BlackScholes benchmarks 189

L I S T O F TA B L E S

Table 4.1 Lines of Code for matrix multiplication imple-
mentaitons. 90

Table 4.2 Runtime results for matrix multiplication on
an Nvidia system. 91

Table 4.3 Runtime results for all tested implementations
of matrix multiplication on an AMD system. . 92

Table 4.4 Runtime of the allpairs based implementations
of matrix multiplication using multiple GPUs . 93

Table 5.1 High-level algorithmic patterns used by the
programmer. 138

Table 5.2 Low-level OpenCL patterns used for code gen-
eration. 144

Table 5.3 Overview of all algorithmic and OpenCL pat-
terns. 171

242

L I S T O F L I S T I N G S

Listing 2.1 Example of an OpenCL kernel. 19

Listing 3.1 Sequential code for LM OSEM. 29

Listing 3.2 Implementation of the upload phase of the LM
OSEM in OpenCL. 31

Listing 3.3 OpenCL pseudocode for the redistribution phase 32

Listing 3.4 Implementation of step 2 of the LM OSEM in
OpenCL. 33

Listing 3.5 Implementation of the dot product computa-
tion in SkelCL. 50

Listing 3.6 SkelCL code snippet before transformation. . . 53

Listing 3.7 SkelCL code snippet after transformation. . . . 53

Listing 3.8 The BLAS saxpy computation using the zip
skeleton with additional arguments 55

Listing 3.9 The BLAS saxpy computation using a zip skele-
ton customized with a lambda expression cap-
turing a variable. 56

Listing 3.10 Source code for the saxpy application emitted
by the skelclc compiler. 57

Listing 3.11 Prototype implementation of the zip skeleton
in OpenCL. 58

Listing 3.12 OpenCL implementation of the zip skeleton
customized for performing the saxpy compu-
tation. 58

Listing 3.13 Implementation of Gaussian blur using the
stencil skeleton. 62

Listing 3.14 OpenCL kernel created by the MapOverlap im-
plementation for the Gaussian blur application. 63

Listing 3.15 Heat simulation with the stencil skeleton . . . 64

Listing 3.16 Structure of the Canny algorithm implemented
by a sequence of skeletons. 65

Listing 3.17 Matrix multiplication expressed using the
generic allpairs skeleton. 67

Listing 3.18 OpenCL kernel used in the implementation of
the generic allpairs skeleton. 68

Listing 3.19 Matrix multiplication expressed using the spe-
cialized allpairs skeleton. 69

Listing 4.1 Implementation of the Mandelbrot set compu-
tation in SkelCL 78

243

244 List of Listings

Listing 4.2 Implementation of the asum application in
SkelCL . 81

Listing 4.3 Implementation of the dot product application
in SkelCL . 81

Listing 4.4 Implementation of matrix multiplication using
the generic allpairs skeleton in SkelCL. 86

Listing 4.5 Implementation of matrix multiplication using
the specialized allpairs skeleton in SkelCL. . . . 87

Listing 4.6 OpenCL kernel of matrix multiplication with-
out optimizations. 87

Listing 4.7 OpenCL kernel of the optimized matrix multi-
plication usgin local memory. 88

Listing 4.8 Implementation of the Gaussian blur in SkelCL
using the MapOverlap implementation of the
stencil skeleton. 96

Listing 4.9 Sequential implementation of the Sobel edge
detection. 99

Listing 4.10 SkelCL implementation of the Sobel edge de-
tection. 100

Listing 4.11 Additional boundary checks and index calcula-
tions for Sobel algorithm, necessary in the stan-
dard OpenCL implementation. 100

Listing 4.12 Structure of the Canny algorithm expressed as
a sequence of skeletons. 102

Listing 4.13 Sequential code for LM OSEM. 104

Listing 4.14 SkelCL code of the LM OSEM algorithm 107

Listing 4.15 Source code of the FDTD application in SkelCL. 112

Listing 5.1 First OpenCL implementation of the parallel re-
duction. 120

Listing 5.2 OpenCL implementation of the parallel reduc-
tion avoiding divergent branching. 121

Listing 5.3 OpenCL implementation of the parallel reduc-
tion avoiding local memory bank conflicts. . . 122

Listing 5.4 OpenCL implementation of the parallel reduc-
tion. Each work-item performs an addition
when loading data from global memory. 123

Listing 5.5 OpenCL implementation of the parallel reduc-
tion. Synchronization inside a warp is avoided
by unrolling the loop for the last 32 work-items. 125

Listing 5.6 OpenCL implementation of the parallel reduc-
tion with a completly unrolled loop. 126

Listing 5.7 Fully optimized OpenCL implementation of
the parallel reduction. 128

List of Listings 245

Listing 5.8 Expression resembling the first two implemen-
tations of parallel reduction presented in List-
ing 5.1 and Listing 5.2. 160

Listing 5.9 Expression resembling the third implementa-
tion of parallel reduction presented in Listing 5.3.161

Listing 5.10 Expression resembling the fourth implementa-
tion of parallel reduction presented in Listing 5.4.161

Listing 5.11 Expression resembling the fifth implementa-
tion of parallel reduction presented in Listing 5.5.162

Listing 5.12 Expression resembling the sixth implementa-
tion of parallel reduction presented in Listing 5.6.163

Listing 5.13 Expression resembling the seventh implemen-
tation of parallel reduction presented in List-
ing 5.7. 164

Listing 5.14 OpenCL code generated for an expression im-
plementing parallel reduction 169

Listing 5.15 Structure of the OpenCL code emitted for the
map-seq pattern. 173

Listing 5.16 Structure of the OpenCL code emitted for the
reduce-seq pattern. 173

Listing 6.1 Linear algebra kernels from the BLAS library
expressed using our high-level algorithmic pat-
terns. 185

Listing 6.2 Molecular dynamics physics application ex-
pressed using our high-level algorithmic pat-
terns. 188

Listing 6.3 BlackScholes mathematical finance application
expressed using our high-level algorithmic pat-
terns. 189

B I B L I O G R A P H Y

[1] 2014 OpenCLTM Optimization Guide. Intel. 2014. url: https://
software.intel.com/en-us/iocl_2014_opg (cit. on pp. 118,
142).

[2] Accelerated Parallel Processing Math Libraries (APPML). Ver-
sion 1.10. AMD. Mar. 2013. url: http : / / developer . amd .
com / tools / heterogeneous - computing / amd - accelerated -
parallel-processing-math-libraries/ (cit. on pp. 87, 88).

[3] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, M.
Torquati. “Targeting Distributed Systems in FastFlow.” In:
Euro-Par 2012: Parallel Processing Workshops, August 27-31,
2012. Revised Selected Papers. Edited by Ioannis Caragiannis
et al. Vol. 7640. Lecture Notes in Computer Science. Springer,
2012, pp. 47–56 (cit. on pp. 23, 203).

[4] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, M.
Torquati. “Accelerating Code on Multi-cores with FastFlow.”
In: Euro-Par 2011 Parallel Processing - 17th International Confer-
ence, Bordeaux, France, August 29 - September 2, 2011, Proceedings,
Part II. Edited by Emmanuel Jeannot, Raymond Namyst, and
Jean Roman. Vol. 6853. Lecture Notes in Computer Science.
Springer, 2011, pp. 170–181 (cit. on p. 203).

[5] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Torquati. “Fast-
Flow: high-level and efficient streaming on multi-core.” In: Pro-
gramming Multi-core and Many-core Computing Systems. Edited
by Sabri Pllana and Fatos Xhafa. Wiley Series on Parallel and
Distributed Computing. Wiley-Blackwell, Oct. 2014 (cit. on
pp. 23, 203).

[6] M. Aldinucci, M. Meneghin, M. Torquati. “Efficient Smith-
Waterman on Multi-core with FastFlow.” In: Proceedings of the
18th Euromicro Conference on Parallel, Distributed and Network-
based Processing, PDP 2010, Pisa, Italy, February 17-19, 2010.
Edited by Marco Danelutto, Julien Bourgeois, and Tom Gross.
IEEE Computer Society, 2010, pp. 195–199 (cit. on p. 24).

[7] M. Aldinucci, C. Spampinato, M. Drocco, M. Torquati, S.
Palazzo. “A parallel edge preserving algorithm for salt and
pepper image denoising.” In: 3rd International Conference on
Image Processing Theory Tools and Applications, IPTA 2012, 15-18
October 2012, Istanbul, Turkey. Edited by Khalifa Djemal and
Mohamed Deriche. IEEE, 2012, pp. 97–104 (cit. on p. 204).

247

https://software.intel.com/en-us/iocl_2014_opg
https://software.intel.com/en-us/iocl_2014_opg
http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-processing-math-libraries/
http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-processing-math-libraries/
http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-processing-math-libraries/

248 Bibliography

[8] M. Alt. “Using Algorithmic Skeletons for Efficient Grid Com-
puting with Predictable Performance.” PhD Thesis. 2007 (cit.
on pp. 24, 199, 200, 203).

[9] M. Alt, S. Gorlatch. “Using Skeletons in a Java-Based Grid
System.” In: Euro-Par 2003. Parallel Processing, 9th International
Euro-Par Conference, Klagenfurt, Austria, August 26-29, 2003. Pro-
ceedings. Edited by Harald Kosch, László Böszörményi, and
Hermann Hellwagner. Vol. 2790. Lecture Notes in Computer
Science. Springer, 2003, pp. 742–749 (cit. on p. 203).

[10] AMD Accelerated Parallel Processing OpenCL User Guide. rev 1.0.
AMD. Dec. 2014. url: http://developer.amd.com/tools-and-
sdks/opencl-zone/amd-accelerated-parallel-processing-
app-sdk/documentation/ (cit. on pp. 118, 142).

[11] AMD OpenCL Accelerated Parallel Processing Software Develop-
ment Kit (APP SDK). Version 2.8. AMD. Dec. 2012 (cit. on
p. 99).

[12] J. Ansel, C. P. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A.
Edelman, S. P. Amarasinghe. “PetaBricks: a language and
compiler for algorithmic choice.” In: Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009.
Edited by Michael Hind and Amer Diwan. ACM, 2009, pp. 38–
49 (cit. on p. 210).

[13] Apache Hadoop. Apache Software Foundation. 2014. url: http:
//hadoop.apache.org/ (cit. on p. 206).

[14] N. Arora, A. Shringarpure, R. W. Vuduc. “Direct N-body Ker-
nels for Multicore Platforms.” In: Proceedings of the Interna-
tional Conference on Parallel Processing. ICPP ’09. Vienna, Aus-
tria: IEEE Computer Society, Sept. 2009, pp. 379–387 (cit. on
p. 45).

[15] J. S. Auerbach, D. F. Bacon, P. Cheng, R. M. Rabbah. “Lime:
a Java-compatible and synthesizable language for heteroge-
neous architectures.” In: Proceedings of the 25th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, October 17-21, 2010,
Reno/Tahoe, Nevada, USA. Edited by William R. Cook, Siobhán
Clarke, and Martin C. Rinard. ACM, 2010, pp. 89–108 (cit. on
p. 209).

[16] C. Augonnet, S. Thibault, R. Namyst, P. Wacrenier. “StarPU:
A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures.” In: Euro-Par 2009 Parallel Processing,
15th International Euro-Par Conference, Delft, The Netherlands, Au-
gust 25-28, 2009. Proceedings. Edited by Henk J. Sips, Dick H. J.

http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/documentation/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/documentation/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/documentation/
http://hadoop.apache.org/
http://hadoop.apache.org/

Bibliography 249

Epema, and Hai-Xiang Lin. Vol. 5704. Lecture Notes in Com-
puter Science. Springer, 2009, pp. 863–874 (cit. on p. 204).

[17] N. Bell, J. Hoberock. “Thrust: A Productivity-Oriented Library
for CUDA.” In: GPU Computing Gems. Edited by Wen-mei W.
Hwu. Morgan Kaufmann, 2011, pp. 359–371 (cit. on pp. 179,
206).

[18] R. S. Bird. “Lectures on Constructive Functional Program-
ming.” In: Constructive Methods in Computer Science. Edited
by Manfred Broy. Springer-Verlag, 1988, pp. 151–218 (cit. on
pp. 36, 137, 212).

[19] H. Bischof, S. Gorlatch, E. Kitzelmann. “Cost Optimality And
Predictability Of Parallel Programming With Skeletons.” In:
Parallel Processing Letters 13.4 (2003), pp. 575–587 (cit. on pp. 24,
199).

[20] C. M. Bishop. Pattern Recognition and Machine Learning. New
York, NY, USA: Springer, Oct. 1, 2007 (cit. on p. 200).

[21] G. E. Blelloch. “Prefix Sums and Their Applications.” In: Syn-
thesis of Parallel Algorithms. Edited by John H. Reif. San Mateo,
CA, USA: Morgan Kaufmann, 1991, pp. 35–60 (cit. on p. 39).

[22] Bolt C++ Template Library. C++ template library for heteroge-
neous compute. AMD. 2014. url: https://github.com/HSA-
Libraries/Bolt (cit. on p. 206).

[23] S. Breuer. “Introducing a Skeleton for Stencil Computations to
the SkelCL Library.” Masterthesis. Jan. 2014 (cit. on p. 66).

[24] K. J. Brown, A. K. Sujeeth, H. Lee, T. Rompf, H. Chafi, M. Oder-
sky, K. Olukotun. “A Heterogeneous Parallel Framework for
Domain-Specific Languages.” In: 2011 International Conference
on Parallel Architectures and Compilation Techniques, PACT 2011,
Galveston, TX, USA, October 10-14, 2011. Edited by Lawrence
Rauchwerger and Vivek Sarkar. IEEE Computer Society, 2011,
pp. 89–100 (cit. on p. 205).

[25] D. Buono, M. Danelutto, S. Lametti, M. Torquati. “Parallel
Patterns for General Purpose Many-Core.” In: 21st Euromi-
cro International Conference on Parallel, Distributed, and Network-
Based Processing, PDP 2013, Belfast, United Kingdom, February 27
- March 1, 2013. IEEE Computer Society, 2013, pp. 131–139 (cit.
on p. 204).

[26] C++ Extensions for Parallelism. N4312. ISO/IEC – JTC1 – SC22

– WG21. Nov. 21, 2014 (cit. on p. 206).

[27] H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, R. Chang. “Random
Laser Action in Semiconductor Powder.” In: Physical Review
Letters 82.11 (1999), pp. 2278–2281 (cit. on p. 110).

https://github.com/HSA-Libraries/Bolt
https://github.com/HSA-Libraries/Bolt

250 Bibliography

[28] B. C. Catanzaro, M. Garland, K. Keutzer. “Copperhead: com-
piling an embedded data parallel language.” In: Proceedings of
the 16th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPOPP 2011, San Antonio, TX, USA,
February 12-16, 2011. Edited by Calin Cascaval and Pen-Chung
Yew. ACM, 2011, pp. 47–56 (cit. on p. 209).

[29] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, K.
Olukotun. “A domain-specific approach to heterogeneous par-
allelism.” In: Proceedings of the 16th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP 2011,
San Antonio, TX, USA, February 12-16, 2011. Edited by Calin
Cascaval and Pen-Chung Yew. ACM, 2011, pp. 35–46 (cit. on
p. 205).

[30] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, V.
Grover. “Accelerating Haskell array codes with multicore
GPUs.” In: Proceedings of the POPL 2011 Workshop on Declara-
tive Aspects of Multicore Programming, DAMP 2011, Austin, TX,
USA, January 23, 2011. Edited by Manuel Carro and John H.
Reppy. ACM, 2011, pp. 3–14 (cit. on p. 207).

[31] D. Chang, A. H. Desoky, M. Ouyang, E. C. Rouchka. “Com-
pute Pairwise Manhattan Distance and Pearson Correlation
Coefficient of Data Points with GPU.” In: Proceedings of the
10th ACIS International Conference on Software Engineering, Arti-
ficial Intelligences, Networking and Parallel/Distributed Computing.
Edited by Haeng-Kon Kim and Roger Y. Lee. SNPD ’09. Daegu,
Korea: IEEE Computer Society, May 2009, pp. 501–506 (cit. on
pp. 45, 46, 49).

[32] S. Chennupaty, P. Hammarlund, S. Jourdan. Intel 4th Genera-
tion Core Processor (Haswell). Hot Chips: A Symposium on High
Performance Chips. Intel. Aug. 2013 (cit. on p. 11).

[33] M. Christen, O. Schenk, H. Burkhart. “PATUS: A Code Gener-
ation and Autotuning Framework for Parallel Iterative Stencil
Computations on Modern Microarchitectures.” In: 25th IEEE
International Symposium on Parallel and Distributed Processing,
IPDPS 2011, Anchorage, Alaska, USA, 16-20 May, 2011 - Confer-
ence Proceedings. IEEE, 2011, pp. 676–687 (cit. on p. 210).

[34] P. Ciechanowicz, P. Kegel, M. Schellmann, S. Gorlatch, H.
Kuchen. “Parallelizing the LM OSEM Image Reconstruction
on Multi-Core Clusters.” In: Parallel Computing: From Multi-
cores and GPU’s to Petascale, Proceedings of the conference ParCo
2009, 1-4 September 2009, Lyon, France. Edited by Barbara M.
Chapman, Frédéric Desprez, Gerhard R. Joubert, Alain Lich-
newsky, Frans J. Peters, and Thierry Priol. Vol. 19. Advances
in Parallel Computing. IOS Press, 2009, pp. 169–176 (cit. on
p. 24).

Bibliography 251

[35] P. Ciechanowicz, H. Kuchen. “Enhancing Muesli’s Data Paral-
lel Skeletons for Multi-core Computer Architectures.” In: 12th
IEEE International Conference on High Performance Computing
and Communications, HPCC 2010, 1-3 September 2010, Melbourne,
Australia. IEEE, 2010, pp. 108–113 (cit. on pp. 23, 203).

[36] M. Cole. Algorithmic Skeletons: Structured Management of Parallel
Computation. Cambridge, MA, USA: MIT Press, 1991 (cit. on
pp. 21, 36, 203).

[37] M. Cole. “Bringing skeletons out of the closet: a pragmatic
manifesto for skeletal parallel programming.” In: Parallel Com-
puting 30.3 (2004), pp. 389–406 (cit. on p. 203).

[38] R. Cole, U. Vishkin. “Faster optimal parallel prefix sums
and list ranking.” In: Information and Computation 81.3 (1989),
pp. 334–352 (cit. on p. 39).

[39] A. Collins, C. Fensch, H. Leather, M. Cole. “MaSiF: Machine
learning guided auto-tuning of parallel skeletons.” In: 20th
Annual International Conference on High Performance Computing,
HiPC 2013, Bengaluru (Bangalore), Karnataka, India, December 18-
21, 2013. IEEE Computer Society, 2013, pp. 186–195 (cit. on
p. 201).

[40] A. Collins, D. Grewe, V. Grover, S. Lee, A. Susnea. “NOVA:
A Functional Language for Data Parallelism.” In: ARRAY’14:
Proceedings of the 2014 ACM SIGPLAN International Workshop
on Libraries, Languages, and Compilers for Array Programming,
Edinburgh, United Kingdom, June 12-13, 2014. Edited by Lau-
rie J. Hendren, Alex Rubinsteyn, Mary Sheeran, and Jan Vitek.
ACM, 2014, p. 8 (cit. on p. 209).

[41] K. D. Cooper, L. Torczon. Engineering a Compiler. Morgan Kauf-
mann, 2004 (cit. on p. 175).

[42] D. Coutts, R. Leshchinskiy, D. Stewart. “Stream Fusion: from
Lists to Streams to Nothing at All.” In: Proceedings of the 12th
ACM SIGPLAN International Conference on Functional Program-
ming. ICFP. Freiburg, Germany: ACM, 2007, pp. 315–326 (cit.
on p. 153).

[43] CUDA Basic Linear Algebra Subroutines (cuBLAS). Version 6.5.
Nvidia. 2014. url: http://developer.nvidia.com/cublas (cit.
on pp. 87, 88, 129, 178, 186).

[44] CUDA C Programming Guide. v6.5. Nvidia. Aug. 2014. url:
http://docs.nvidia.com/cuda/cuda-c-programming-guide
(cit. on pp. 6, 17, 68, 118, 142).

[45] O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare. Structured Program-
ming. New York, NY, USA: Academic Press, Feb. 11, 1972 (cit.
on p. 20).

http://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cuda-c-programming-guide

252 Bibliography

[46] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, J. S. Vetter. “The Scalable Heteroge-
neous Computing (SHOC) benchmark suite.” In: Proceedings of
3rd Workshop on General Purpose Processing on Graphics Process-
ing Units, GPGPU 2010, Pittsburgh, Pennsylvania, USA, March
14, 2010. Edited by David R. Kaeli and Miriam Leeser. Vol. 425.
ACM International Conference Proceeding Series. ACM, 2010,
pp. 63–74 (cit. on p. 188).

[47] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N.
Sharp, Q. Wu. “Parallel Programming Using Skeleton Func-
tions.” In: PARLE ’93, Parallel Architectures and Languages Eu-
rope, 5th International PARLE Conference, Munich, Germany, June
14-17, 1993, Proceedings. Edited by Arndt Bode, Mike Reeve,
and Gottfried Wolf. Vol. 694. Lecture Notes in Computer Sci-
ence. Springer, 1993, pp. 146–160 (cit. on pp. 24, 199, 200).

[48] U. Dastgeer, J. Enmyren, C. W. Kessler. “Auto-tuning SkePU:
A Multi-backend Skeleton Programming Framework for multi-
GPU Systems.” In: Proceedings of the 4th International Workshop
on Multicore Software Engineering. IWMSE ’11. Waikiki, Hon-
olulu, HI, USA: ACM, 2011, pp. 25–32 (cit. on p. 204).

[49] U. Dastgeer, C. Kessler. “Smart Containers and Skeleton Pro-
gramming for GPU-based Systems.” In: Proceedings 7th Int.
Workshop on High-Level Parallel Programming and Applications
(HLPP-2014). Amsterdam, Netherlands, July 2014 (cit. on
p. 204).

[50] C. O. Daub, R. Steuer, J. Selbig, S. Kloska. “Estimating mutual
information using B-spline functions – an improved similarity
measure for analysing gene expression data.” In: BMC Bioin-
formatics 5.1 (Aug. 2004), p. 118 (cit. on p. 49).

[51] J. Dean, S. Ghemawat. “MapReduce: Simplified Data Process-
ing on Large Clusters.” In: 6th Symposium on Operating System
Design and Implementation (OSDI 2004), San Francisco, California,
USA, December 6-8, 2004. Edited by Eric A. Brewer and Peter
Chen. USENIX Association, 2004, pp. 137–150 (cit. on p. 205).

[52] R. Dennard, V. Rideout, E. Bassous, A. LeBlanc. “Design of ion-
implanted MOSFET’s with very small physical dimensions.”
In: Solid-State Circuits, IEEE Journal of 9.5 (Oct. 1974), pp. 256–
268 (cit. on p. 4).

[53] E. W. Dijkstra. “Letters to the editor: go to statement consid-
ered harmful.” In: Commun. ACM 11.3 (1968), pp. 147–148 (cit.
on p. 20).

Bibliography 253

[54] R. Dolbeau, S. Bihan, F. Bodin. “HMPP: A hybrid multi-core
parallel programming environment.” In: Proceedings of the first
Workshop on General Purpose Processing on Graphics Processing
Units (GPGPU). 2007 (cit. on p. 208).

[55] J. Dongarra. “Basic Linear Algebra Subprograms Technical
(Blast) Forum Standard (1).” In: International Journal of High
Performance Computing Applications 16.1 (Feb. 2002), pp. 1–111

(cit. on pp. 40, 79).

[56] J. Dongarra. “Basic Linear Algebra Subprograms Technical
(Blast) Forum Standard (2).” In: International Journal of High
Performance Computing Applications 16.2 (May 2002), pp. 115–
199 (cit. on pp. 40, 79).

[57] C. Dubach, P. Cheng, R. M. Rabbah, D. F. Bacon, S. J. Fink.
“Compiling a high-level language for GPUs: (via language
support for architectures and compilers).” In: ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’12, Beijing, China - June 11 - 16, 2012. Edited by Jan Vitek,
Haibo Lin, and Frank Tip. ACM, 2012, pp. 1–12 (cit. on p. 209).

[58] C. Dubach, T. M. Jones, E. V. Bonilla, G. Fursin, M. F. P.
O’Boyle. “Portable compiler optimisation across embedded
programs and microarchitectures using machine learning.” In:
42st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO-42 2009), December 12-16, 2009, New York, New
York, USA. Edited by David H. Albonesi, Margaret Martonosi,
David I. August, and José F. Martínez. ACM, 2009, pp. 78–88

(cit. on p. 200).

[59] G. Duboscq, L. Stadler, T. Würthinger, D. Simon, C. Wimmer,
H. Mössenböck. “Graal IR: An Extensible Declarative Interme-
diate Representation.” In: Proceedings of the 2nd Asia-Pacific Pro-
gramming Languages and Compilers Workshop. Shenzhen, China,
Feb. 2013 (cit. on p. 205).

[60] J. Dünnweber, S. Gorlatch. Higher-Order Components for Grid
Programming - Making Grids More Usable. Springer, 2009 (cit.
on p. 203).

[61] J. Dünnweber, S. Gorlatch. “HOC-SA: A Grid Service Archi-
tecture for Higher-Order Components.” In: 2004 IEEE Inter-
national Conference on Services Computing (SCC 2004), 15-18
September 2004, Shanghai, China. IEEE Computer Society, 2004,
pp. 288–294 (cit. on p. 203).

[62] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell,
X. Martorell, J. Planas. “Ompss: a Proposal for Programming
Heterogeneous Multi-Core Architectures.” In: Parallel Process-
ing Letters 21.2 (2011), pp. 173–193 (cit. on p. 208).

254 Bibliography

[63] V. K. Elangovan, R. M. Badia, E. A. Parra. “OmpSs-OpenCL
Programming Model for Heterogeneous Systems.” In: Lan-
guages and Compilers for Parallel Computing, 25th International
Workshop, LCPC 2012, Tokyo, Japan, September 11-13, 2012,
Revised Selected Papers. Edited by Hironori Kasahara and
Keiji Kimura. Vol. 7760. Lecture Notes in Computer Science.
Springer, 2012, pp. 96–111 (cit. on p. 208).

[64] J. Enmyren, C. Kessler. “SkePU: A Multi-Backend Skeleton
Programming Library for Multi-GPU Systems.” In: Proceedings
4th Int. Workshop on High-Level Parallel Programming and Appli-
cations (HLPP-2010). Baltimore, MD, USA (cit. on p. 204).

[65] S. Ernsting, H. Kuchen. “Algorithmic skeletons for multi-
core, multi-GPU systems and clusters.” In: IJHPCN 7.2 (2012),
pp. 129–138 (cit. on p. 204).

[66] W. Fang, B. He, Q. Luo, N. K. Govindaraju. “Mars: Acceler-
ating MapReduce with Graphics Processors.” In: IEEE Trans.
Parallel Distrib. Syst. 22.4 (2011), pp. 608–620 (cit. on p. 206).

[67] D. P. Friedman, D. S. Wise. “Aspects of Applicative Program-
ming for Parallel Processing.” In: IEEE Transaction on Comput-
ers 27.4 (1978), pp. 289–296 (cit. on p. 80).

[68] M. Friese. “Extending the Skeleton Library SkelCL with a
Skeleton for Allpairs Computations.” Masterthesis. Mar. 2013

(cit. on p. 70).

[69] J. J. Fumero, M. Steuwer, C. Dubach. “A Composable Array
Function Interface for Heterogeneous Computing in Java.”
In: Proceedings of ACM SIGPLAN International Workshop on
Libraries, Languages, and Compilers for Array Programming.
ARRAY’14. Edinburgh, United Kingdom: ACM, June 2014,
pp. 44–49 (cit. on p. 205).

[70] M. Garland, D. B. Kirk. “Understanding throughput-oriented
architectures.” In: Commun. ACM 53.11 (2010), pp. 58–66 (cit.
on pp. 3, 11, 13, 14).

[71] Girl (Lena, or Lenna). University of Southern California SIPI Im-
age Database. url: http://sipi.usc.edu/database/database.
php?volume=misc (cit. on pp. 98, 101).

[72] H. González-Vélez, M. Leyton. “A survey of algorithmic skele-
ton frameworks: high-level structured parallel programming
enablers.” In: Softw., Pract. Exper. 40.12 (2010), pp. 1135–1160

(cit. on pp. 22, 203).

[73] S. Gorlatch. “From transformations to methodology in parallel
program development: A case study.” In: Microprocessing and
Microprogramming 41.8-9 (1996), pp. 571–588 (cit. on p. 212).

http://sipi.usc.edu/database/database.php?volume=misc
http://sipi.usc.edu/database/database.php?volume=misc

Bibliography 255

[74] S. Gorlatch. “Send-receive considered harmful: Myths and re-
alities of message passing.” In: ACM Trans. Program. Lang. Syst.
26.1 (2004), pp. 47–56 (cit. on pp. 21, 212).

[75] S. Gorlatch. “Toward Formally-Based Design of Message
Passing Programs.” In: IEEE Trans. Software Eng. 26.3 (2000),
pp. 276–288 (cit. on pp. 24, 212).

[76] S. Gorlatch, M. Cole. “Parallel Skeletons.” In: Encyclopedia of
Parallel Computing. Edited by David Padua. Berlin: Springer,
2011, pp. 1417–1422 (cit. on pp. 34, 36).

[77] S. Gorlatch, C. Wedler, C. Lengauer. “Optimization Rules
for Programming with Collective Operations.” In: 13th Interna-
tional Parallel Processing Symposium / 10th Symposium on Parallel
and Distributed Processing (IPPS / SPDP ’99), 12-16 April 1999,
San Juan, Puerto Rico, Proceedings. IEEE Computer Society, 1999,
pp. 492–499 (cit. on p. 212).

[78] C. Grelck, S. Scholz. “SAC - A Functional Array Language for
Efficient Multi-threaded Execution.” In: International Journal of
Parallel Programming 34.4 (2006), pp. 383–427 (cit. on p. 209).

[79] J. Guo, J. Thiyagalingam, S. Scholz. “Breaking the GPU pro-
gramming barrier with the auto-parallelising SAC compiler.”
In: Proceedings of the POPL 2011 Workshop on Declarative Aspects
of Multicore Programming, DAMP 2011, Austin, TX, USA, Jan-
uary 23, 2011. Edited by Manuel Carro and John H. Reppy.
ACM, 2011, pp. 15–24 (cit. on p. 209).

[80] M. Haidl. “Simulation of Random Lasing on Modern Parallel
Computer Systems.” (in German). Diploma Thesis. July 2011

(cit. on p. 111).

[81] T. D. Han, T. S. Abdelrahman. “hiCUDA: High-Level GPGPU
Programming.” In: IEEE Trans. Parallel Distrib. Syst. 22.1 (2011),
pp. 78–90 (cit. on p. 208).

[82] M. Harris. Optimizing Parallel Reduction in CUDA. Nvidia. 2007

(cit. on pp. 118, 119, 129, 132).

[83] M. Harris, S. Sengupta, J. D. Owens. “Parallel Prefix Sum
(Scan) with CUDA.” In: GPU Gems 3. Edited by Hubert
Nguyen. Boston, MA, USA: Addison-Wesley Professional,
2007, pp. 851–876 (cit. on pp. 39, 60).

[84] Y. Hayashi, M. Cole. “Static performance prediction of skele-
tal parallel programs.” In: Parallel Algorithms Appl. 17.1 (2002),
pp. 59–84 (cit. on pp. 24, 199, 200).

[85] C. Hewitt, H. G. Baker. “Laws for Communicating Parallel
Processes.” In: IFIP Congress. 1977, pp. 987–992 (cit. on p. 80).

256 Bibliography

[86] P. Hijma, R. V. Nieuwpoort, C. J. H. Jacobs, H. E. Bal. “Stepwise-
refinement for performance: a methodology for many-core
programming.” In: Concurrency and Computation: Practice and
Experience (2015), pp. 1–40 (cit. on p. 207).

[87] L. Hochstein, V. R. Basili, U. Vishkin, J. Gilbert. “A pilot study
to compare programming effort for two parallel program-
ming models.” In: Journal of Systems and Software 81.11 (2008),
pp. 1920–1930 (cit. on p. 75).

[88] L. Hochstein, J. Carver, F. Shull, S. Asgari, V. R. Basili. “Paral-
lel Programmer Productivity: A Case Study of Novice Parallel
Programmers.” In: Proceedings of the ACM/IEEE SC2005 Con-
ference on High Performance Networking and Computing, Novem-
ber 12-18, 2005, Seattle, WA, USA, CD-Rom. 2005, p. 35 (cit. on
p. 75).

[89] S. S. Huang, A. Hormati, D. F. Bacon, R. M. Rabbah. “Liq-
uid Metal: Object-Oriented Programming Across the Hard-
ware/Software Boundary.” In: ECOOP 2008 - Object-Oriented
Programming, 22nd European Conference, Paphos, Cyprus, July 7-
11, 2008, Proceedings. Edited by Jan Vitek. Vol. 5142. Lecture
Notes in Computer Science. Springer, 2008, pp. 76–103 (cit. on
p. 209).

[90] P. Hudak, J. Hughes, S. L. P. Jones, P. Wadler. “A history of
Haskell: being lazy with class.” In: Proceedings of the Third
ACM SIGPLAN History of Programming Languages Conference
(HOPL-III), San Diego, California, USA, 9-10 June 2007. Edited
by Barbara G. Ryder and Brent Hailpern. ACM, 2007, pp. 1–55

(cit. on p. 212).

[91] P. Hudak. “Report on the Programming Language Haskell, A
Non-strict, Purely Functional Language.” In: SIGPLAN Notices
27.5 (1992), p. 1 (cit. on p. 207).

[92] Intel® 64 and IA-32 Architectures Optimization Reference Manual.
Intel. Sept. 2014. url: http : / / www . intel . com / content /
www / us / en / architecture - and - technology / 64 - ia - 32 -
architectures-optimization-manual.html (cit. on p. 13).

[93] Intel Math Kernel Library (MKL). Version 11.2. Intel. 2014. url:
https://software.intel.com/en- us/intel- mkl (cit. on
pp. 129, 186).

[94] International Standard: Programming Languages – C. ISO/IEC
9889:2011. ISO/IEC – JTC1 – SC22 – WG14. Dec. 8, 2011 (cit.
on p. 16).

[95] X. Jiang, C. Soukoulis. “Time dependent theory for random
lasers.” In: Physical review letters 85.1 (2000), pp. 70–3 (cit. on
p. 110).

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://software.intel.com/en-us/intel-mkl

Bibliography 257

[96] J. P. Jones. “SPMD cluster-based parallel 3D OSEM.” In: Nu-
clear Science Symposium Conference Record, 2002 IEEE. IEEE,
Nov. 2002, 1495–1499 vol.3 (cit. on p. 104).

[97] S. P. Jones, A. Tolmach, T. Hoare. “Playing by the Rules:
Rewriting as a Practical Optimisation Technique in GHC.” In:
2001 Haskell Workshop. 2001 (cit. on pp. 153, 212).

[98] R. Karrenberg, S. Hack. “Whole-function vectorization.” In:
Proceedings of the 9th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization. CGO. ACM, 2011,
pp. 141–150 (cit. on pp. 174, 201).

[99] D. B. Kirk, W. W. Hwu. Programming Massively Parallel Proces-
sors - A Hands-on Approach. Morgan Kaufmann, 2010 (cit. on
pp. 87, 88).

[100] S. Knitter, M. Kues, M. Haidl, C. Fallnich. “Linearly polarized
emission from random lasers with anisotropically amplifying
media.” In: Optics Express 21.25 (2013), pp. 31591–31603 (cit. on
p. 111).

[101] D. E. Knuth. The Art of Computer Programming, Volume 3: Sort-
ing and Searching (2nd ed.) Boston, MA, USA: Addison-Wesley,
1998 (cit. on p. 39).

[102] M. Köster, R. Leißa, S. Hack, R. Membarth, P. Slusallek. “Code
Refinement of Stencil Codes.” In: Parallel Processing Letters 24.3
(2014) (cit. on p. 211).

[103] H. Kuchen. “A Skeleton Library.” In: Euro-Par 2002, Paral-
lel Processing, 8th International Euro-Par Conference Paderborn,
Germany, August 27-30, 2002, Proceedings. Edited by Burkhard
Monien and Rainer Feldmann. Vol. 2400. Lecture Notes in
Computer Science. Springer, 2002, pp. 620–629 (cit. on pp. 23,
203).

[104] R. Lämmel. “Google’s MapReduce Programming Model – Re-
visited.” In: Science of Computer Programming 68.3 (Oct. 2007),
pp. 208–237 (cit. on pp. 49, 206).

[105] C. Lattner, V. Adve. “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation.” In: Proceedings
of the International Symposium on Code Generation and Optimiza-
tion: Feedback-directed and Runtime Optimization. CGO ’04. Palo
Alto, California: IEEE Computer Society, 2004, pp. 75–86 (cit.
on p. 51).

[106] E. A. Lee. “The Problem with Threads.” In: IEEE Computer 39.5
(2006), pp. 33–42 (cit. on p. 4).

[107] H. Lee, K. J. Brown, A. K. Sujeeth, H. Chafi, T. Rompf, M. Oder-
sky, K. Olukotun. “Implementing Domain-Specific Languages
for Heterogeneous Parallel Computing.” In: IEEE Micro 31.5
(2011), pp. 42–53 (cit. on p. 205).

258 Bibliography

[108] M. Leyton, J. M. Piquer. “Skandium: Multi-core Programming
with Algorithmic Skeletons.” In: Proceedings of the 18th Euromi-
cro Conference on Parallel, Distributed and Network-based Process-
ing, PDP 2010, Pisa, Italy, February 17-19, 2010. Edited by Marco
Danelutto, Julien Bourgeois, and Tom Gross. IEEE Computer
Society, 2010, pp. 289–296 (cit. on pp. 23, 203).

[109] E. Lindholm, J. Nickolls, S. F. Oberman, J. Montrym. “NVIDIA
Tesla: A Unified Graphics and Computing Architecture.” In:
IEEE Micro 28.2 (2008), pp. 39–55 (cit. on p. 119).

[110] T. Lutz, C. Fensch, M. Cole. “PARTANS: An autotuning frame-
work for stencil computation on multi-GPU systems.” In:
TACO 9.4 (2013), p. 59 (cit. on p. 211).

[111] B. B. Mandelbrot. “Fractal Aspects of the Iteration of z 7→
λz(1 − z) for Complex λ and z.” In: Annals of the New York
Academy of Sciences 357.1 (1980), pp. 249–259 (cit. on p. 76).

[112] K. Matsuzaki, K. Kakehi, H. Iwasaki, Z. Hu, Y. Akashi. “A
Fusion-Embedded Skeleton Library.” In: Euro-Par 2004 Parallel
Processing, 10th International Euro-Par Conference, Pisa, Italy, Au-
gust 31-September 3, 2004, Proceedings. Edited by Marco Dane-
lutto, Marco Vanneschi, and Domenico Laforenza. Vol. 3149.
Lecture Notes in Computer Science. Springer, 2004, pp. 644–
653 (cit. on p. 23).

[113] M. McCool, A. D. Robinson, J. Reinders. Structured Parallel Pro-
gramming. Patterns for Efficient Computation. Boston, MA, USA:
Morgan Kaufmann, 2012 (cit. on pp. 21, 206).

[114] T. L. McDonell, M. M. T. Chakravarty, G. Keller, B. Lippmeier.
“Optimising purely functional GPU programs.” In: ACM
SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA - September 25 - 27, 2013. Edited
by Greg Morrisett and Tarmo Uustalu. ACM, 2013, pp. 49–60

(cit. on p. 207).

[115] F. Mesmay, A. Rimmel, Y. Voronenko, M. Püschel. “Bandit-
based optimization on graphs with application to library
performance tuning.” In: Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ICML 2009, Montreal,
Quebec, Canada, June 14-18, 2009. Edited by Andrea Pohoreckyj
Danyluk, Léon Bottou, and Michael L. Littman. Vol. 382.
ACM International Conference Proceeding Series. ACM, 2009,
pp. 729–736 (cit. on p. 180).

[116] G. E. Moore. “Cramming more components onto integrated
circuits.” In: Proceedings of the IEEE 86.1 (Jan. 1998), pp. 82–85

(cit. on p. 4).

[117] MPI: A Message Passing Interface Standard. Version 3.0. Message
Passing Interface Forum. Sept. 21, 2012 (cit. on p. 203).

Bibliography 259

[118] S. Muchnick. Advanced Compiler Design and Implementation. San
Fransisco, CA, USA: Morgan Kaufmann, Aug. 15, 1997 (cit. on
p. 201).

[119] Aaftab Munshi, ed. The OpenCL Specification. Version 1.2, Doc-
ument Revision 19. Khronos OpenCL Working Group. Nov.
2012 (cit. on pp. 6, 17, 35).

[120] M. Nixon, A. S. Aguado. Feature Extraction & Image Processing
for Computer Vision. 3rd. Academic Press, Aug. 2012 (cit. on
p. 65).

[121] Nvidia CUDA Toolkit. Nvidia. Apr. 2015 (cit. on p. 189).

[122] M. Odersky. “The Scala experiment: can we provide better
language support for component systems?” In: Proceedings of
the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2006, Charleston, South Carolina,
USA, January 11-13, 2006. Edited by J. Gregory Morrisett and
Simon L. Peyton Jones. ACM, 2006, pp. 166–167 (cit. on p. 205).

[123] M. Odersky, T. Rompf. “Unifying functional and object-
oriented programming with Scala.” In: Commun. ACM 57.4
(2014), pp. 76–86 (cit. on p. 205).

[124] G. Ofenbeck, T. Rompf, A. Stojanov, M. Odersky, M. Püschel.
“Spiral in scala: towards the systematic construction of gen-
erators for performance libraries.” In: Generative Programming:
Concepts and Experiences, GPCE’13, Indianapolis, IN, USA - Octo-
ber 27 - 28, 2013. Edited by Jaakko Järvi and Christian Kästner.
ACM, 2013, pp. 125–134 (cit. on p. 212).

[125] K. Olukotun, L. Hammond. “The future of microprocessors.”
In: ACM Queue 3.7 (2005), pp. 26–29 (cit. on p. 3).

[126] OpenCL Design and Programming Guide for the Intel® Xeon PhiTM

Coprocessor. Intel. Jan. 2014. url: https://software.intel.
com / en - us / articles / opencl - design - and - programming -
guide-for-the-intel-xeon-phi-coprocessor (cit. on pp. 118,
142).

[127] OpenMP Application Program Interface. Version 4.0. OpenMP Ar-
chitecture Review Board. July 2013 (cit. on pp. 16, 203, 208).

[128] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, S. P. Amaras-
inghe. “Portable performance on heterogeneous architectures.”
In: Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS ’13, Houston, TX, USA - March 16 - 20,
2013. Edited by Vivek Sarkar and Rastislav Bodík. ACM, 2013,
pp. 431–444 (cit. on p. 210).

[129] Pthreads: POSIX. 1c, Threads Extension. IEEE Std 1003.1c-1995.
IEEE. 1995 (cit. on p. 16).

https://software.intel.com/en-us/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor
https://software.intel.com/en-us/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor
https://software.intel.com/en-us/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor

260 Bibliography

[130] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. R. Johnson,
D. A. Padua, M. M. Veloso, R. W. Johnson. “Spiral: A Gener-
ator for Platform-Adapted Libraries of Signal Processing Alo-
gorithms.” In: IJHPCA 18.1 (2004), pp. 21–45 (cit. on p. 212).

[131] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. P. Amaras-
inghe, F. Durand. “Decoupling algorithms from schedules for
easy optimization of image processing pipelines.” In: ACM
Trans. Graph. 31.4 (2012), p. 32 (cit. on p. 211).

[132] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, S. P.
Amarasinghe. “Halide: a language and compiler for optimiz-
ing parallelism, locality, and recomputation in image process-
ing pipelines.” In: ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, Seattle, WA, USA,
June 16-19, 2013. Edited by Hans-Juergen Boehm and Cormac
Flanagan. ACM, 2013, pp. 519–530 (cit. on p. 211).

[133] A. J. Reader, K. Erlandsson, M. A. Flower, R. J. Ott. “Fast accu-
rate iterative reconstruction for low-statistics positron volume
imaging.” In: Physics in Medicine and Biology 43.4 (1998), p. 835

(cit. on pp. 27, 28, 103).

[134] J. Reinders. Intel threading building blocks - outfitting C++ for
multi-core processor parallelism. O’Reilly, 2007 (cit. on p. 206).

[135] T. Rompf, M. Odersky. “Lightweight modular staging: a prag-
matic approach to runtime code generation and compiled
DSLs.” In: Commun. ACM 55.6 (2012), pp. 121–130 (cit. on
p. 205).

[136] A. Sarje, S. Aluru. “All-pairs Computations on Many-core
Graphics Processors.” In: Parallel Computing 39.2 (Feb. 2013),
pp. 79–93 (cit. on pp. 69, 70).

[137] M. Schellmann, S. Gorlatch, D. Meiländer, T. Kösters, K.
Schäfers, F. Wübbeling, M. Burger. “Parallel Medical Im-
age Reconstruction: From Graphics Processors to Grids.” In:
Proceedings of the 10th International Conference on Parallel Com-
puting Technologies. PaCT ’09. Novosibirsk, Russia: Springer,
2009, pp. 457–473 (cit. on pp. 27, 31, 103, 106).

[138] P. Sebbah, C. Vanneste. “Random laser in the localized
regime.” In: Physical Review B 66.14 (2002), pp. 1–10 (cit. on
p. 110).

[139] R. L. Siddon. “Fast calculation of the exact radiological path
for a three-dimensional CT array.” In: Medical Physics 12.2
(1985), pp. 252–255 (cit. on p. 28).

Bibliography 261

[140] D. G. Spampinato, M. Püschel. “A Basic Linear Algebra Com-
piler.” In: 12th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’14, Orlando, FL, USA,
February 15-19, 2014. Edited by David R. Kaeli and Tipp Mose-
ley. ACM, 2014, p. 23 (cit. on p. 212).

[141] Standard for Programming Language C++. ISO/IEC 14882:2014.
ISO/IEC – JTC1 – SC22 – WG21. Dec. 15, 2014 (cit. on p. 16).

[142] A. Stegmeier, M. Frieb, R. Jahr, T. Ungerer. “Algorithmic Skele-
tons for Parallelization of Embedded Real-time Systems.” In:
Proceedings of the 3rd Workshop on High-performance and Real-
time Embedded Systems. HiRES 2015. Amsterdam, Netherlands,
Jan. 2015 (cit. on pp. 24, 199).

[143] M. Steuwer, C. Fensch, S. Lindley, C. Dubach. “Generat-
ing Performance Portable Code using Rewrite Rules: From
High-Level Functional Patterns to High-Performance OpenCL
Code.” In: Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming. ICFP. accepted for pub-
lication. Vancouver, Canada: ACM, 2015 (cit. on pp. 138, 142).

[144] J. A. Stuart, J. D. Owens. “Multi-GPU MapReduce on GPU
Clusters.” In: 25th IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2011, Anchorage, Alaska, USA, 16-
20 May, 2011 - Conference Proceedings. IEEE, 2011, pp. 1068–1079

(cit. on p. 206).

[145] H. Sutter. “The Free Lunch Is Over: A Fundamental Turn To-
ward Concurrency in Software.” In: Dr. Dobb’s Journal 30.3
(Mar. 2005) (cit. on pp. 4, 5).

[146] J. Svensson, K. Claessen, M. Sheeran. “GPGPU kernel imple-
mentation and refinement using Obsidian.” In: Proceedings of
the International Conference on Computational Science, ICCS 2010,
University of Amsterdam, The Netherlands, May 31 - June 2, 2010.
Edited by Peter M. A. Sloot, G. Dick van Albada, and Jack
Dongarra. Vol. 1. Procedia Computer Science 1. Elsevier, 2010,
pp. 2065–2074 (cit. on p. 207).

[147] J. Svensson, M. Sheeran, K. Claessen. “Obsidian: A Domain
Specific Embedded Language for Parallel Programming of
Graphics Processors.” In: Implementation and Application of
Functional Languages - 20th International Symposium, IFL 2008,
Hatfield, UK, September 10-12, 2008. Revised Selected Papers.
Edited by Sven-Bodo Scholz and Olaf Chitil. Vol. 5836. Lec-
ture Notes in Computer Science. Springer, 2008, pp. 156–173

(cit. on p. 207).

262 Bibliography

[148] M. Takeuchi, Y. Makino, K. Kawachiya, H. Horii, T. Suzumura,
T. Suganuma, T. Onodera. “Compiling X10 to Java.” In: Pro-
ceedings of the 2011 ACM SIGPLAN X10 Workshop. X10 ’11. San
Jose, California: ACM, 2011, 3:1–3:10 (cit. on p. 209).

[149] The OpenACCTM Application Programming Interface. Version 2.0.
OpenACC. June 2013 (cit. on pp. 16, 208).

[150] The OpenCL BLAS library (clBLAS). Version 2.2.0. AMD. 2014.
url: http://github.com/clMathLibraries/clBLAS (cit. on
pp. 129, 185).

[151] Tuning CUDA Applications for Kepler. Nvidia (cit. on p. 16).

[152] S. E. Umbaugh. Computer Vision and Image Processing. New Jer-
sey, USA: Prentice Hall PTR, 1997 (cit. on pp. 44, 94).

[153] S. P. Vanderwiel, D. Nathanson, D. J. Lilja. “Complexity and
Performance in Parallel Programming Languages.” In: 1997
Workshop on High-Level Programming Models and Supportive En-
vironments (HIPS ’97), 1 April 1997, Geneva, Switzerland. 1997,
p. 3 (cit. on p. 75).

[154] P. Wadler. “Deforestation: Transforming Programs to Elimi-
nate Trees.” In: Theor. Comput. Sci. 73.2 (1990), pp. 231–248 (cit.
on p. 207).

[155] White Paper – AMD Graphics Cores Next (GCN) Architecture.
AMD. June 2012 (cit. on pp. 129, 131).

[156] White Paper – First the Tick, Now the Tock: Next Generation Intel
Microarchitecture (Nehalem). Intel. 2008 (cit. on p. 129).

[157] Whitepaper – NVIDIA’s Next Generation CUDA Compute Archi-
tecture: Fermi. v1.1. Nvidia. 2009 (cit. on pp. 119, 129).

[158] Whitepaper – NVIDIA’s Next Generation CUDA Compute Archi-
tecture: Kepler. v1.1. Nvidia. 2012 (cit. on p. 13).

[159] A. Yamilov, X. Wu, H. Cao, A. Burin. “Absorption-induced
confinement of lasing modes in diffusive random media.” In:
Optics Letters 30.18 (2005), pp. 2430–2432 (cit. on p. 110).

[160] K. Yee. “Numerical solution of initial boundary value prob-
lems involving Maxwell’s equations in isotropic media.” In:
IEEE Transactions on Antennas and Propagation (1966) (cit. on
p. 110).

[161] Y. Zhang, F. Mueller. “Hidp: A hierarchical data parallel lan-
guage.” In: Proceedings of the 2013 IEEE/ACM International Sym-
posium on Code Generation and Optimization, CGO 2013, Shen-
zhen, China, February 23-27, 2013. IEEE Computer Society, 2013,
pp. 1–11 (cit. on p. 209).

http://github.com/clMathLibraries/clBLAS

L E B E N S L A U F

Z U R P E R S O N

geboren am 21.05.1985 in Duisburg

Familienstand: ledig

Nationalität: deutsch

Name des Vaters: Peter Steuwer,

geb. Kremer

Name der Mutter: Bärbel Steuwer

S C H U L B I L D U N G

09/1991 – 07/1995 Grundschule, Duisburg

08/1995 – 06/2004 Gesamtschule, Dinslaken

Hochschulreife (Abitur) am 24.06.2004

S T U D I U M

10/2005 – 09/2010 Diplomstudiengang Informatik mit
Nebenfach Mathematik,
Westfälische Wilhelms-Universität Münster

Diplomprüfung Informatik am 13.09.2010

seit 10/2010 Promotionsstudiengang Informatik,
Westfälische Wilhelms-Universität Münster

TÄT I G K E I T E N

07/2004 – 04/2005 Zivildienst, Dinslaken

03/2008 – 02/2010 Studentische Hilfskraft,
Westfälische Wilhelms-Universität Münster

10/2010 – 09/2014 Wissenschaftlicher Mitarbeiter,
Westfälische Wilhelms-Universität Münster

seit 10/2014 Research Associate,
The University of Edinburgh

B E G I N N D E R D I S S E RTAT I O N

seit 10/2010 Institut für Informatik,
Westfälische Wilhelms-Universität Münster

betreut durch Prof. Dr. Sergei Gorlatch

colophon

This document was typeset using the LATEX 2ε typesetting system orig-
inally developed by Leslie Lamport, based on TEX created by Don-
ald Knuth. For the typographical look-and-feel the classicthesis
style developed by André Miede was used. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements
of Typographic Style”. The Fonts used in this document are Palatino
by Hermann Zapf, DejaVu Sans Mono by Štěpán Roh and others, and
AMS Euler by Hermann Zapf and Donald Knuth.

	Abstract
	Publications
	Acknowledgements
	Contents
	Introduction & Background
	1 Introduction
	1.1 Multi-Core Processors and their Programming
	1.2 The Programmability Challenge
	1.3 The Performance Portability Challenge
	1.4 Contributions of this Thesis
	1.5 Outline of this Thesis

	2 Background
	2.1 Modern Parallel Processors
	2.1.1 Multi-Core CPUs
	2.1.2 Graphics Processing Units (GPUs)

	2.2 Programming of Multi-Core CPUs and GPUs
	2.2.1 The OpenCL Programming Approach

	2.3 Structured Parallel Programming
	2.3.1 Algorithmic Skeletons
	2.3.2 Advantages of Structured Parallel Programming

	2.4 Summary

	The SkelCL high-level programming model
	3 High-Level Programming for Multi-GPU Systems
	3.1 The Need for High-Level Abstractions
	3.1.1 Challenges of GPU Programming
	3.1.2 Requirements for a High-Level Programming Model

	3.2 The SkelCL Programming Model
	3.2.1 Parallel Container Data Types
	3.2.2 Algorithmic Skeletons
	3.2.3 Data Distribution and Redistribution
	3.2.4 Advanced Algorithmic Skeletons

	3.3 The SkelCL Library
	3.3.1 Programming with the SkelCL Library
	3.3.2 Syntax and Integration with C++
	3.3.3 Skeleton Execution on OpenCL Devices
	3.3.4 Algorithmic Skeleton Implementations
	3.3.5 Memory Management Implementation
	3.3.6 Data Distribution Implementation

	3.4 Conclusion

	4 Application Studies
	4.1 Experimental Setup
	4.1.1 Evaluation Metrics
	4.1.2 Hardware Setup

	4.2 Computation of the Mandelbrot Set
	4.3 Linear Algebra Applications
	4.4 Matrix Multiplication
	4.5 Image Processing Applications
	4.5.1 Gaussian Blur
	4.5.2 Sobel Edge Detection
	4.5.3 Canny Edge Detection

	4.6 Medical Imaging
	4.7 Physics Simulation
	4.8 Summary
	4.9 Conclusion

	A novel code generation approach offering Performance Portability
	5 Code generation using patterns
	5.1 A Case Study of OpenCL Optimizations
	5.1.1 Optimizing Parallel Reduction for Nvidia GPUs
	5.1.2 Portability of the Optimized Parallel Reduction
	5.1.3 The Need for a Pattern-Based Code Generator

	5.2 Overview of our Code Generation Approach
	5.2.1 Introductory Example

	5.3 Patterns: Design and Implementation
	5.3.1 High-level Algorithmic Patterns
	5.3.2 Low-level, OpenCL-specific Patterns
	5.3.3 Summary

	5.4 Rewrite Rules
	5.4.1 Algorithmic Rules
	5.4.2 OpenCL-Specific Rules
	5.4.3 Applying the Rewrite Rules
	5.4.4 Towards Automatically Applying our Rewrite Rules
	5.4.5 Conclusion

	5.5 Code Generator & Implementation Details
	5.5.1 Generating OpenCL Code for Parallel Reduction
	5.5.2 Generating OpenCL Code for Patterns
	5.5.3 The Type System and Static Memory Allocation
	5.5.4 Implementation Details

	5.6 Conclusion

	6 Application Studies
	6.1 Experimental Setup
	6.2 Parallel Reduction
	6.2.1 Automatically Applying the Rewrite Rules

	6.3 Linear Algebra Applications
	6.3.1 Comparison vs. Portable Implementation
	6.3.2 Comparison vs. Highly-tuned Implementations

	6.4 Molecular Dynamics Physics Application
	6.5 Mathematical Finance Application
	6.6 Conclusion

	Summary & Conclusion
	7 Towards a Holistic Systematic Approach for Programming and Optimizing Programs
	7.1 Addressing the Programmability Challenge
	7.2 Addressing the Performance Portability Challenge
	7.3 Future Work
	7.3.1 Enhancing the SkelCL Programming Model
	7.3.2 Enhancing the Pattern-Based Code Generator

	8 Comparison with Related Work
	8.1 Related Work
	8.1.1 Algorithmic Skeleton Libraries
	8.1.2 Other Structured Parallel Programming Approaches
	8.1.3 Related GPU Programming Approaches
	8.1.4 Related Domain Specific Approaches for Stencil Computations
	8.1.5 Related Approaches using Rewrite Rules
	Appendix
	A Correctness of Rewrite Rules
	A.1 Algorithmic Rules
	A.2 OpenCL-Specific Rules

	B Derivations for Parallel Reduction
	List of Figures
	List of Figures

	List of Tables
	List of Tables

	List of Listings
	List of Listings

	Bibliography
	Lebenslauf
	Colophon

