
Lift: The Language, The IR and Code Generation

Naums Mogers, Larisa Stoltzfus
April 2nd, 2018

University of Edinburgh

Table of contents

1. lift – An Intermediate Language

2. Writing a lift Application

3. lift Intermediate Representation

4. lift Compilation

Source code, installation manual and slides are available at
http://www.lift-project.org/ispass2018

1/26

http://www.lift-project.org/ispass2018

lift – An Intermediate Language

Algorithmic Patterns

In the following section we introduce the predefined pat-
terns used as building blocks to express programs. Besides
these patterns, the Lift IL also supports user functions writ-
ten in C operating on scalar values, which implement the
application specific computations.

Algorithmic Patterns The Lift IL supports four algorith-
mic patterns corresponding to sequential implementations of
the well known map and reduce patterns, the identity and
the iterate primitive. The iterate pattern applies a function
f m times by re-injecting the output of each iteration as the
input of the next. The length of the output array is inferred
as a function h of the number of iterations m, the input array
length n and the change of the array length by a single itera-
tion captured by the function g. We will discuss in section 5
how we automatically infer the length of the output array.

mapSeq(f , x1x2· · ·xn) = f (x1) f (x2) · · · f (xn)

reduceSeq(z, f , x1x2· · ·xn) = f (· · · (f (f (z, x1), x2) · · ·), xn)

id(x1x2· · ·xn) = x1x2· · ·xn

iteratem(f , x1x2· · ·xn) = f (· · · (f (︸ ︷︷ ︸
m times

x1x2· · ·xn)))

Data Layout Patterns The Lift IL defines a set of patterns
that do not perform any computation but simply reorganize
the data layout. The first two patterns, split and join, add or
remove a dimension from the input array.

splitm(x1 x2 . xn)

= x1 x2

m

. xn

join(x1 x2 . xn)

= x1 x2 . xn

The gather and scatter patterns apply a permutation
function f which remaps indices when reading from or
writing to arrays respectively. Combined with split and join,
for instance, these primitives can express matrix transposition:
split

nrows
◦ scatter(i→ (i mod ncols) × nrows + i / ncols) ◦ join

gather(f , x f (1) x f (2) · · · x f (n)) = x1 x2 · · · xn

scatter(f , x1 x2 · · · xn) = x f (1) x f (2) · · · x f (n)

The zip pattern is used to combine two arrays of elements
into a single array of pairs while the get primitive projects a
component of a tuple.

zip(x1 x2 . . . xn , y1 y2 . . . yn)

= (x1,y1) (x2,y2) . . . (xn,yn)

geti((x1, x2, . . . , xn)) = xi

Finally, slide applies a moving window to the input data
and is used to express stencil computations. For instance,
mapSeq(reduceSeq(0,+)) ◦ slide(3,1,input) expresses a sim-
ple 3-point stencil. Multi-dimensional stencils are also ex-
pressible by composing several slide functions interleaved
with transpositions (not shown for space constraint).

slide(size, step, x1 x2 . xn)

= x1 x2 . xn

size

step . . .

Parallel Patterns OpenCL provides a hierarchical organi-
zation of parallelism where threads are grouped into work
groups of local threads or a flat organization where threads
are simply global. This hierarchy is represented with three
patterns, where a mapLcl must be nested inside of mapWrg:

mapGlb{0,1,2} mapWrg{0,1,2} mapLcl{0,1,2}

OpenCL supports up to three thread dimensions, represented
by the superscripts 0, 1, 2. The semantic of these patterns is
identical to mapSeq, except that f is applied in parallel.

Address Space Patterns OpenCL distinguishes between
global, local and private address spaces. The Lift IL offers
three corresponding primitives which wrap a function and
influence the address space used to store the output:

toGlobal toLocal toPrivate

For example, a sequential copy of an array x into local mem-
ory is expressed as: toLocal(mapSeq(id))(x). This design de-
couples the decision of where to store data (i.e., the address
space) from the decision of how the data is produced (i.e.,
sequentially or in parallel).

Vectorize Pattern The Lift IL supports two primitives that
transforms data between scalar and vector types, and one
pattern which applies a function to a vector.

asVector(x1 x2 . . . xn) = −−−−−−−−−−−→x1, x2, . . . , xn, xi is scalar

asScalar(−−−−−−−−−−−→x1, x2, . . . , xn) = x1 x2 . . . xn

mapVec(f ,−−−−−−−−−−−→x1, x2, . . . , xn) =
−−−−−−−−−−−−−−−−−−−−→
f (x1), f (x2), . . . , f (xn)

During code generation, the function f is transformed
into a vectorized form. This transformation is straightforward
for functions based on simple arithmetic operations since
OpenCL already defines vectorized forms for these operation.
In the other more complicated cases, the code generator
simply applies f to each scalar in the vector.

76

2/26

Data Layout Patterns

In the following section we introduce the predefined pat-
terns used as building blocks to express programs. Besides
these patterns, the Lift IL also supports user functions writ-
ten in C operating on scalar values, which implement the
application specific computations.

Algorithmic Patterns The Lift IL supports four algorith-
mic patterns corresponding to sequential implementations of
the well known map and reduce patterns, the identity and
the iterate primitive. The iterate pattern applies a function
f m times by re-injecting the output of each iteration as the
input of the next. The length of the output array is inferred
as a function h of the number of iterations m, the input array
length n and the change of the array length by a single itera-
tion captured by the function g. We will discuss in section 5
how we automatically infer the length of the output array.

mapSeq(f , x1x2· · ·xn) = f (x1) f (x2) · · · f (xn)

reduceSeq(z, f , x1x2· · ·xn) = f (· · · (f (f (z, x1), x2) · · ·), xn)

id(x1x2· · ·xn) = x1x2· · ·xn

iteratem(f , x1x2· · ·xn) = f (· · · (f (︸ ︷︷ ︸
m times

x1x2· · ·xn)))

Data Layout Patterns The Lift IL defines a set of patterns
that do not perform any computation but simply reorganize
the data layout. The first two patterns, split and join, add or
remove a dimension from the input array.

splitm(x1 x2 . xn)

= x1 x2

m

. xn

join(x1 x2 . xn)

= x1 x2 . xn

The gather and scatter patterns apply a permutation
function f which remaps indices when reading from or
writing to arrays respectively. Combined with split and join,
for instance, these primitives can express matrix transposition:
split

nrows
◦ scatter(i→ (i mod ncols) × nrows + i / ncols) ◦ join

gather(f , x f (1) x f (2) · · · x f (n)) = x1 x2 · · · xn

scatter(f , x1 x2 · · · xn) = x f (1) x f (2) · · · x f (n)

The zip pattern is used to combine two arrays of elements
into a single array of pairs while the get primitive projects a
component of a tuple.

zip(x1 x2 . . . xn , y1 y2 . . . yn)

= (x1,y1) (x2,y2) . . . (xn,yn)

geti((x1, x2, . . . , xn)) = xi

Finally, slide applies a moving window to the input data
and is used to express stencil computations. For instance,
mapSeq(reduceSeq(0,+)) ◦ slide(3,1,input) expresses a sim-
ple 3-point stencil. Multi-dimensional stencils are also ex-
pressible by composing several slide functions interleaved
with transpositions (not shown for space constraint).

slide(size, step, x1 x2 . xn)

= x1 x2 . xn

size

step . . .

Parallel Patterns OpenCL provides a hierarchical organi-
zation of parallelism where threads are grouped into work
groups of local threads or a flat organization where threads
are simply global. This hierarchy is represented with three
patterns, where a mapLcl must be nested inside of mapWrg:

mapGlb{0,1,2} mapWrg{0,1,2} mapLcl{0,1,2}

OpenCL supports up to three thread dimensions, represented
by the superscripts 0, 1, 2. The semantic of these patterns is
identical to mapSeq, except that f is applied in parallel.

Address Space Patterns OpenCL distinguishes between
global, local and private address spaces. The Lift IL offers
three corresponding primitives which wrap a function and
influence the address space used to store the output:

toGlobal toLocal toPrivate

For example, a sequential copy of an array x into local mem-
ory is expressed as: toLocal(mapSeq(id))(x). This design de-
couples the decision of where to store data (i.e., the address
space) from the decision of how the data is produced (i.e.,
sequentially or in parallel).

Vectorize Pattern The Lift IL supports two primitives that
transforms data between scalar and vector types, and one
pattern which applies a function to a vector.

asVector(x1 x2 . . . xn) = −−−−−−−−−−−→x1, x2, . . . , xn, xi is scalar

asScalar(−−−−−−−−−−−→x1, x2, . . . , xn) = x1 x2 . . . xn

mapVec(f ,−−−−−−−−−−−→x1, x2, . . . , xn) =
−−−−−−−−−−−−−−−−−−−−→
f (x1), f (x2), . . . , f (xn)

During code generation, the function f is transformed
into a vectorized form. This transformation is straightforward
for functions based on simple arithmetic operations since
OpenCL already defines vectorized forms for these operation.
In the other more complicated cases, the code generator
simply applies f to each scalar in the vector.

76

• Do not perform any computation
• Reorganize the data layout (View)

3/26

Data Layout Patterns

In the following section we introduce the predefined pat-
terns used as building blocks to express programs. Besides
these patterns, the Lift IL also supports user functions writ-
ten in C operating on scalar values, which implement the
application specific computations.

Algorithmic Patterns The Lift IL supports four algorith-
mic patterns corresponding to sequential implementations of
the well known map and reduce patterns, the identity and
the iterate primitive. The iterate pattern applies a function
f m times by re-injecting the output of each iteration as the
input of the next. The length of the output array is inferred
as a function h of the number of iterations m, the input array
length n and the change of the array length by a single itera-
tion captured by the function g. We will discuss in section 5
how we automatically infer the length of the output array.

mapSeq(f , x1x2· · ·xn) = f (x1) f (x2) · · · f (xn)

reduceSeq(z, f , x1x2· · ·xn) = f (· · · (f (f (z, x1), x2) · · ·), xn)

id(x1x2· · ·xn) = x1x2· · ·xn

iteratem(f , x1x2· · ·xn) = f (· · · (f (︸ ︷︷ ︸
m times

x1x2· · ·xn)))

Data Layout Patterns The Lift IL defines a set of patterns
that do not perform any computation but simply reorganize
the data layout. The first two patterns, split and join, add or
remove a dimension from the input array.

splitm(x1 x2 . xn)

= x1 x2

m

. xn

join(x1 x2 . xn)

= x1 x2 . xn

The gather and scatter patterns apply a permutation
function f which remaps indices when reading from or
writing to arrays respectively. Combined with split and join,
for instance, these primitives can express matrix transposition:
split

nrows
◦ scatter(i→ (i mod ncols) × nrows + i / ncols) ◦ join

gather(f , x f (1) x f (2) · · · x f (n)) = x1 x2 · · · xn

scatter(f , x1 x2 · · · xn) = x f (1) x f (2) · · · x f (n)

The zip pattern is used to combine two arrays of elements
into a single array of pairs while the get primitive projects a
component of a tuple.

zip(x1 x2 . . . xn , y1 y2 . . . yn)

= (x1,y1) (x2,y2) . . . (xn,yn)

geti((x1, x2, . . . , xn)) = xi

Finally, slide applies a moving window to the input data
and is used to express stencil computations. For instance,
mapSeq(reduceSeq(0,+)) ◦ slide(3,1,input) expresses a sim-
ple 3-point stencil. Multi-dimensional stencils are also ex-
pressible by composing several slide functions interleaved
with transpositions (not shown for space constraint).

slide(size, step, x1 x2 . xn)

= x1 x2 . xn

size

step . . .

Parallel Patterns OpenCL provides a hierarchical organi-
zation of parallelism where threads are grouped into work
groups of local threads or a flat organization where threads
are simply global. This hierarchy is represented with three
patterns, where a mapLcl must be nested inside of mapWrg:

mapGlb{0,1,2} mapWrg{0,1,2} mapLcl{0,1,2}

OpenCL supports up to three thread dimensions, represented
by the superscripts 0, 1, 2. The semantic of these patterns is
identical to mapSeq, except that f is applied in parallel.

Address Space Patterns OpenCL distinguishes between
global, local and private address spaces. The Lift IL offers
three corresponding primitives which wrap a function and
influence the address space used to store the output:

toGlobal toLocal toPrivate

For example, a sequential copy of an array x into local mem-
ory is expressed as: toLocal(mapSeq(id))(x). This design de-
couples the decision of where to store data (i.e., the address
space) from the decision of how the data is produced (i.e.,
sequentially or in parallel).

Vectorize Pattern The Lift IL supports two primitives that
transforms data between scalar and vector types, and one
pattern which applies a function to a vector.

asVector(x1 x2 . . . xn) = −−−−−−−−−−−→x1, x2, . . . , xn, xi is scalar

asScalar(−−−−−−−−−−−→x1, x2, . . . , xn) = x1 x2 . . . xn

mapVec(f ,−−−−−−−−−−−→x1, x2, . . . , xn) =
−−−−−−−−−−−−−−−−−−−−→
f (x1), f (x2), . . . , f (xn)

During code generation, the function f is transformed
into a vectorized form. This transformation is straightforward
for functions based on simple arithmetic operations since
OpenCL already defines vectorized forms for these operation.
In the other more complicated cases, the code generator
simply applies f to each scalar in the vector.

76For examples of Gather and Scatter indexing functions, see
src/main/ir/ast/package.scala

4/26

Data Layout Patterns

In the following section we introduce the predefined pat-
terns used as building blocks to express programs. Besides
these patterns, the Lift IL also supports user functions writ-
ten in C operating on scalar values, which implement the
application specific computations.

Algorithmic Patterns The Lift IL supports four algorith-
mic patterns corresponding to sequential implementations of
the well known map and reduce patterns, the identity and
the iterate primitive. The iterate pattern applies a function
f m times by re-injecting the output of each iteration as the
input of the next. The length of the output array is inferred
as a function h of the number of iterations m, the input array
length n and the change of the array length by a single itera-
tion captured by the function g. We will discuss in section 5
how we automatically infer the length of the output array.

mapSeq(f , x1x2· · ·xn) = f (x1) f (x2) · · · f (xn)

reduceSeq(z, f , x1x2· · ·xn) = f (· · · (f (f (z, x1), x2) · · ·), xn)

id(x1x2· · ·xn) = x1x2· · ·xn

iteratem(f , x1x2· · ·xn) = f (· · · (f (︸ ︷︷ ︸
m times

x1x2· · ·xn)))

Data Layout Patterns The Lift IL defines a set of patterns
that do not perform any computation but simply reorganize
the data layout. The first two patterns, split and join, add or
remove a dimension from the input array.

splitm(x1 x2 . xn)

= x1 x2

m

. xn

join(x1 x2 . xn)

= x1 x2 . xn

The gather and scatter patterns apply a permutation
function f which remaps indices when reading from or
writing to arrays respectively. Combined with split and join,
for instance, these primitives can express matrix transposition:
split

nrows
◦ scatter(i→ (i mod ncols) × nrows + i / ncols) ◦ join

gather(f , x f (1) x f (2) · · · x f (n)) = x1 x2 · · · xn

scatter(f , x1 x2 · · · xn) = x f (1) x f (2) · · · x f (n)

The zip pattern is used to combine two arrays of elements
into a single array of pairs while the get primitive projects a
component of a tuple.

zip(x1 x2 . . . xn , y1 y2 . . . yn)

= (x1,y1) (x2,y2) . . . (xn,yn)

geti((x1, x2, . . . , xn)) = xi

Finally, slide applies a moving window to the input data
and is used to express stencil computations. For instance,
mapSeq(reduceSeq(0,+)) ◦ slide(3,1,input) expresses a sim-
ple 3-point stencil. Multi-dimensional stencils are also ex-
pressible by composing several slide functions interleaved
with transpositions (not shown for space constraint).

slide(size, step, x1 x2 . xn)

= x1 x2 . xn

size

step . . .

Parallel Patterns OpenCL provides a hierarchical organi-
zation of parallelism where threads are grouped into work
groups of local threads or a flat organization where threads
are simply global. This hierarchy is represented with three
patterns, where a mapLcl must be nested inside of mapWrg:

mapGlb{0,1,2} mapWrg{0,1,2} mapLcl{0,1,2}

OpenCL supports up to three thread dimensions, represented
by the superscripts 0, 1, 2. The semantic of these patterns is
identical to mapSeq, except that f is applied in parallel.

Address Space Patterns OpenCL distinguishes between
global, local and private address spaces. The Lift IL offers
three corresponding primitives which wrap a function and
influence the address space used to store the output:

toGlobal toLocal toPrivate

For example, a sequential copy of an array x into local mem-
ory is expressed as: toLocal(mapSeq(id))(x). This design de-
couples the decision of where to store data (i.e., the address
space) from the decision of how the data is produced (i.e.,
sequentially or in parallel).

Vectorize Pattern The Lift IL supports two primitives that
transforms data between scalar and vector types, and one
pattern which applies a function to a vector.

asVector(x1 x2 . . . xn) = −−−−−−−−−−−→x1, x2, . . . , xn, xi is scalar

asScalar(−−−−−−−−−−−→x1, x2, . . . , xn) = x1 x2 . . . xn

mapVec(f ,−−−−−−−−−−−→x1, x2, . . . , xn) =
−−−−−−−−−−−−−−−−−−−−→
f (x1), f (x2), . . . , f (xn)

During code generation, the function f is transformed
into a vectorized form. This transformation is straightforward
for functions based on simple arithmetic operations since
OpenCL already defines vectorized forms for these operation.
In the other more complicated cases, the code generator
simply applies f to each scalar in the vector.

76

In the following section we introduce the predefined pat-
terns used as building blocks to express programs. Besides
these patterns, the Lift IL also supports user functions writ-
ten in C operating on scalar values, which implement the
application specific computations.

Algorithmic Patterns The Lift IL supports four algorith-
mic patterns corresponding to sequential implementations of
the well known map and reduce patterns, the identity and
the iterate primitive. The iterate pattern applies a function
f m times by re-injecting the output of each iteration as the
input of the next. The length of the output array is inferred
as a function h of the number of iterations m, the input array
length n and the change of the array length by a single itera-
tion captured by the function g. We will discuss in section 5
how we automatically infer the length of the output array.

mapSeq(f , x1x2· · ·xn) = f (x1) f (x2) · · · f (xn)

reduceSeq(z, f , x1x2· · ·xn) = f (· · · (f (f (z, x1), x2) · · ·), xn)

id(x1x2· · ·xn) = x1x2· · ·xn

iteratem(f , x1x2· · ·xn) = f (· · · (f (︸ ︷︷ ︸
m times

x1x2· · ·xn)))

Data Layout Patterns The Lift IL defines a set of patterns
that do not perform any computation but simply reorganize
the data layout. The first two patterns, split and join, add or
remove a dimension from the input array.

splitm(x1 x2 . xn)

= x1 x2

m

. xn

join(x1 x2 . xn)

= x1 x2 . xn

The gather and scatter patterns apply a permutation
function f which remaps indices when reading from or
writing to arrays respectively. Combined with split and join,
for instance, these primitives can express matrix transposition:
split

nrows
◦ scatter(i→ (i mod ncols) × nrows + i / ncols) ◦ join

gather(f , x f (1) x f (2) · · · x f (n)) = x1 x2 · · · xn

scatter(f , x1 x2 · · · xn) = x f (1) x f (2) · · · x f (n)

The zip pattern is used to combine two arrays of elements
into a single array of pairs while the get primitive projects a
component of a tuple.

zip(x1 x2 . . . xn , y1 y2 . . . yn)

= (x1,y1) (x2,y2) . . . (xn,yn)

geti((x1, x2, . . . , xn)) = xi

Finally, slide applies a moving window to the input data
and is used to express stencil computations. For instance,
mapSeq(reduceSeq(0,+)) ◦ slide(3,1,input) expresses a sim-
ple 3-point stencil. Multi-dimensional stencils are also ex-
pressible by composing several slide functions interleaved
with transpositions (not shown for space constraint).

slide(size, step, x1 x2 . xn)

= x1 x2 . xn

size

step . . .

Parallel Patterns OpenCL provides a hierarchical organi-
zation of parallelism where threads are grouped into work
groups of local threads or a flat organization where threads
are simply global. This hierarchy is represented with three
patterns, where a mapLcl must be nested inside of mapWrg:

mapGlb{0,1,2} mapWrg{0,1,2} mapLcl{0,1,2}

OpenCL supports up to three thread dimensions, represented
by the superscripts 0, 1, 2. The semantic of these patterns is
identical to mapSeq, except that f is applied in parallel.

Address Space Patterns OpenCL distinguishes between
global, local and private address spaces. The Lift IL offers
three corresponding primitives which wrap a function and
influence the address space used to store the output:

toGlobal toLocal toPrivate

For example, a sequential copy of an array x into local mem-
ory is expressed as: toLocal(mapSeq(id))(x). This design de-
couples the decision of where to store data (i.e., the address
space) from the decision of how the data is produced (i.e.,
sequentially or in parallel).

Vectorize Pattern The Lift IL supports two primitives that
transforms data between scalar and vector types, and one
pattern which applies a function to a vector.

asVector(x1 x2 . . . xn) = −−−−−−−−−−−→x1, x2, . . . , xn, xi is scalar

asScalar(−−−−−−−−−−−→x1, x2, . . . , xn) = x1 x2 . . . xn

mapVec(f ,−−−−−−−−−−−→x1, x2, . . . , xn) =
−−−−−−−−−−−−−−−−−−−−→
f (x1), f (x2), . . . , f (xn)

During code generation, the function f is transformed
into a vectorized form. This transformation is straightforward
for functions based on simple arithmetic operations since
OpenCL already defines vectorized forms for these operation.
In the other more complicated cases, the code generator
simply applies f to each scalar in the vector.

76

5/26

Parallel Patterns

• mapWrg(0− 2)
• mapLcl(0− 2)
• mapGlb(0− 2)

• mapWarp
• mapLane

6/26

Address Space Patterns

In the following section we introduce the predefined pat-
terns used as building blocks to express programs. Besides
these patterns, the Lift IL also supports user functions writ-
ten in C operating on scalar values, which implement the
application specific computations.

Algorithmic Patterns The Lift IL supports four algorith-
mic patterns corresponding to sequential implementations of
the well known map and reduce patterns, the identity and
the iterate primitive. The iterate pattern applies a function
f m times by re-injecting the output of each iteration as the
input of the next. The length of the output array is inferred
as a function h of the number of iterations m, the input array
length n and the change of the array length by a single itera-
tion captured by the function g. We will discuss in section 5
how we automatically infer the length of the output array.

mapSeq(f , x1x2· · ·xn) = f (x1) f (x2) · · · f (xn)

reduceSeq(z, f , x1x2· · ·xn) = f (· · · (f (f (z, x1), x2) · · ·), xn)

id(x1x2· · ·xn) = x1x2· · ·xn

iteratem(f , x1x2· · ·xn) = f (· · · (f (︸ ︷︷ ︸
m times

x1x2· · ·xn)))

Data Layout Patterns The Lift IL defines a set of patterns
that do not perform any computation but simply reorganize
the data layout. The first two patterns, split and join, add or
remove a dimension from the input array.

splitm(x1 x2 . xn)

= x1 x2

m

. xn

join(x1 x2 . xn)

= x1 x2 . xn

The gather and scatter patterns apply a permutation
function f which remaps indices when reading from or
writing to arrays respectively. Combined with split and join,
for instance, these primitives can express matrix transposition:
split

nrows
◦ scatter(i→ (i mod ncols) × nrows + i / ncols) ◦ join

gather(f , x f (1) x f (2) · · · x f (n)) = x1 x2 · · · xn

scatter(f , x1 x2 · · · xn) = x f (1) x f (2) · · · x f (n)

The zip pattern is used to combine two arrays of elements
into a single array of pairs while the get primitive projects a
component of a tuple.

zip(x1 x2 . . . xn , y1 y2 . . . yn)

= (x1,y1) (x2,y2) . . . (xn,yn)

geti((x1, x2, . . . , xn)) = xi

Finally, slide applies a moving window to the input data
and is used to express stencil computations. For instance,
mapSeq(reduceSeq(0,+)) ◦ slide(3,1,input) expresses a sim-
ple 3-point stencil. Multi-dimensional stencils are also ex-
pressible by composing several slide functions interleaved
with transpositions (not shown for space constraint).

slide(size, step, x1 x2 . xn)

= x1 x2 . xn

size

step . . .

Parallel Patterns OpenCL provides a hierarchical organi-
zation of parallelism where threads are grouped into work
groups of local threads or a flat organization where threads
are simply global. This hierarchy is represented with three
patterns, where a mapLcl must be nested inside of mapWrg:

mapGlb{0,1,2} mapWrg{0,1,2} mapLcl{0,1,2}

OpenCL supports up to three thread dimensions, represented
by the superscripts 0, 1, 2. The semantic of these patterns is
identical to mapSeq, except that f is applied in parallel.

Address Space Patterns OpenCL distinguishes between
global, local and private address spaces. The Lift IL offers
three corresponding primitives which wrap a function and
influence the address space used to store the output:

toGlobal toLocal toPrivate

For example, a sequential copy of an array x into local mem-
ory is expressed as: toLocal(mapSeq(id))(x). This design de-
couples the decision of where to store data (i.e., the address
space) from the decision of how the data is produced (i.e.,
sequentially or in parallel).

Vectorize Pattern The Lift IL supports two primitives that
transforms data between scalar and vector types, and one
pattern which applies a function to a vector.

asVector(x1 x2 . . . xn) = −−−−−−−−−−−→x1, x2, . . . , xn, xi is scalar

asScalar(−−−−−−−−−−−→x1, x2, . . . , xn) = x1 x2 . . . xn

mapVec(f ,−−−−−−−−−−−→x1, x2, . . . , xn) =
−−−−−−−−−−−−−−−−−−−−→
f (x1), f (x2), . . . , f (xn)

During code generation, the function f is transformed
into a vectorized form. This transformation is straightforward
for functions based on simple arithmetic operations since
OpenCL already defines vectorized forms for these operation.
In the other more complicated cases, the code generator
simply applies f to each scalar in the vector.

76

• These primitives decouple the decision of where to store data
from the decision of how the data is produced.

7/26

Vectorize Pattern

In the following section we introduce the predefined pat-
terns used as building blocks to express programs. Besides
these patterns, the Lift IL also supports user functions writ-
ten in C operating on scalar values, which implement the
application specific computations.

Algorithmic Patterns The Lift IL supports four algorith-
mic patterns corresponding to sequential implementations of
the well known map and reduce patterns, the identity and
the iterate primitive. The iterate pattern applies a function
f m times by re-injecting the output of each iteration as the
input of the next. The length of the output array is inferred
as a function h of the number of iterations m, the input array
length n and the change of the array length by a single itera-
tion captured by the function g. We will discuss in section 5
how we automatically infer the length of the output array.

mapSeq(f , x1x2· · ·xn) = f (x1) f (x2) · · · f (xn)

reduceSeq(z, f , x1x2· · ·xn) = f (· · · (f (f (z, x1), x2) · · ·), xn)

id(x1x2· · ·xn) = x1x2· · ·xn

iteratem(f , x1x2· · ·xn) = f (· · · (f (︸ ︷︷ ︸
m times

x1x2· · ·xn)))

Data Layout Patterns The Lift IL defines a set of patterns
that do not perform any computation but simply reorganize
the data layout. The first two patterns, split and join, add or
remove a dimension from the input array.

splitm(x1 x2 . xn)

= x1 x2

m

. xn

join(x1 x2 . xn)

= x1 x2 . xn

The gather and scatter patterns apply a permutation
function f which remaps indices when reading from or
writing to arrays respectively. Combined with split and join,
for instance, these primitives can express matrix transposition:
split

nrows
◦ scatter(i→ (i mod ncols) × nrows + i / ncols) ◦ join

gather(f , x f (1) x f (2) · · · x f (n)) = x1 x2 · · · xn

scatter(f , x1 x2 · · · xn) = x f (1) x f (2) · · · x f (n)

The zip pattern is used to combine two arrays of elements
into a single array of pairs while the get primitive projects a
component of a tuple.

zip(x1 x2 . . . xn , y1 y2 . . . yn)

= (x1,y1) (x2,y2) . . . (xn,yn)

geti((x1, x2, . . . , xn)) = xi

Finally, slide applies a moving window to the input data
and is used to express stencil computations. For instance,
mapSeq(reduceSeq(0,+)) ◦ slide(3,1,input) expresses a sim-
ple 3-point stencil. Multi-dimensional stencils are also ex-
pressible by composing several slide functions interleaved
with transpositions (not shown for space constraint).

slide(size, step, x1 x2 . xn)

= x1 x2 . xn

size

step . . .

Parallel Patterns OpenCL provides a hierarchical organi-
zation of parallelism where threads are grouped into work
groups of local threads or a flat organization where threads
are simply global. This hierarchy is represented with three
patterns, where a mapLcl must be nested inside of mapWrg:

mapGlb{0,1,2} mapWrg{0,1,2} mapLcl{0,1,2}

OpenCL supports up to three thread dimensions, represented
by the superscripts 0, 1, 2. The semantic of these patterns is
identical to mapSeq, except that f is applied in parallel.

Address Space Patterns OpenCL distinguishes between
global, local and private address spaces. The Lift IL offers
three corresponding primitives which wrap a function and
influence the address space used to store the output:

toGlobal toLocal toPrivate

For example, a sequential copy of an array x into local mem-
ory is expressed as: toLocal(mapSeq(id))(x). This design de-
couples the decision of where to store data (i.e., the address
space) from the decision of how the data is produced (i.e.,
sequentially or in parallel).

Vectorize Pattern The Lift IL supports two primitives that
transforms data between scalar and vector types, and one
pattern which applies a function to a vector.

asVector(x1 x2 . . . xn) = −−−−−−−−−−−→x1, x2, . . . , xn, xi is scalar

asScalar(−−−−−−−−−−−→x1, x2, . . . , xn) = x1 x2 . . . xn

mapVec(f ,−−−−−−−−−−−→x1, x2, . . . , xn) =
−−−−−−−−−−−−−−−−−−−−→
f (x1), f (x2), . . . , f (xn)

During code generation, the function f is transformed
into a vectorized form. This transformation is straightforward
for functions based on simple arithmetic operations since
OpenCL already defines vectorized forms for these operation.
In the other more complicated cases, the code generator
simply applies f to each scalar in the vector.

76

• During code generation, the lift compiler transforms f into a
vectorized form using OpenCL built-in vectorized arithmetic
operations whenever possible.

• In other cases, f is applied to each scalar in the vector.

8/26

Low-level IRs

All lift primitives are either:

• High-level, capturing rich information about the algorithmic
structure of programs

• Low-level and platform-specific (OpenCL, OpenCL for FPGAs,
OpenMP, etc)

9/26

Writing an Application

General Steps

• Determine input parameters
• Initialise input data

• If testing, initialise comparison data

• Craft or translate the algorithm of interest
• Create an OpenCL kernel from your algorithm

10/26

Data Input to Lift Algorithms

• Lift can take in arrays or scalars as input parameters

• Single entry point for arrays into functions
• Multiple arrays can be zipped together (but must be the same
size!)

11/26

Initialising Data in Scala

• Create arrays of data to pass into Lift algorithms in Scala

• Our examples are all in unit tests, which include data to
compare against - often from the same algorithm in Scala

12/26

Developing an Algorithm

The goal is not for Lift to be programmed in directly.
However, functionality for new types of algorithms must be added in
and tested. In doing so, there are a few things to keep in mind:

• Lift allows multiple inputs, but there is only one data entry point
to the main algorithm (can contain tuples)

• The algorithm itself must eventually map values back to global
memory

• The result will be returned in a single array (however, this array
can also contain tuples)

13/26

Simple Example: 1D Jacobi Stencil

14/26

Creating an OpenCL kernel

• To compile your Lift kernel to OpenCL, run
[opencl.executor]Compile(<kernel>)

• This kernel can then be saved as a string or file

• To execute the kernel straight away (compiling will happen
behind the scenes), run
[opencl.executor]Execute(<options>)

[Array[type]](lambda, ..inputs..)

15/26

lift Intermediate Representation

Class diagram

1 partialDot(x: [float]N , y: [float]N) =

2 (join ◦ mapWrg0(

3 join ◦ toGlobal(mapLcl0(mapSeq(id))) ◦ split1 ◦

4 iterate6(join ◦

5 mapLcl0(toLocal(mapSeq(id)) ◦
6 reduceSeq(add, 0)) ◦

7 split2) ◦

8 join ◦ mapLcl0(toLocal(mapSeq(id)) ◦

9 reduceSeq(multAndSumUp , 0)) ◦ split2

10) ◦ split128)(zip(x, y))

Listing 1. Lift IL implementation of partial dot product

3.3 Example: Dot Product in the Lift IL
Listing 1 shows one possible implementation of dot product
expressed in the Lift IL. The program is represented using a
functional style, therefore, the program is read from right to
left instead of the familiar left to right common in imperative
programming. Furthermore, to simplify the notation we use
the ◦ symbol to denote sequential function composition, i.e.,
(f ◦ g)(x) = f (g(x)).

In the program of Listing 1 the input arrays x and y are
combined using the zip pattern in line 10. The zipped array
is then split into chunks of size 128 (line 10). A work group
processes a single chunk using the mapWrg pattern (line 2)
before combining the computed chunks using the join pattern
(line 2). Inside of a work group we perform three steps to
process a chunk of 128 elements: 1) we split the chunk further
into pairs of two zipped elements, which we multiply and
add up before copying the computed result into local memory
(lines 8 and 9); 2) we iteratively reduce two elements at a time
in local memory (lines 5 and 7); 3) we copy the computed
result back into global memory (line 3).

Note that the code shown here corresponds to a single
OpenCL kernel which only computes a partial dot product.
We focus on this OpenCL kernel and omit a second kernel
which sums up all intermediate results, because the vast
majority of the runtime is spent in the first kernel.

3.4 Summary
In this section we have discussed the design of the Lift
functional data-parallel intermediate language. It is similar in
style to prior work [4, 14, 18] and is OpenCL specific. The
Lift IL expresses very precisely how programs are mapped
to the OpenCL programming model, as we have seen for the
dot product example. The following section describes how
this language is represented in our compiler. Section 5 will
then describe how efficient OpenCL code is produced.

4. The Lift Intermediate Representation
This section introduces the Lift Intermediate Representation.
All programs expressible in the Lift intermediate language
can be represented by the Lift IR. One of the key features of
the Lift IR is that it preserves a functional representation of
the program all the way through.

Expr
type: Type

as: AddressSpace

Literal
value: String

Param
FunCall
f: FunDecl
args: Expr*

FunDecl

Lambda
params: Param*
body: Expr

Pattern
UserFun
code: String

MapGlb
MapWrg

MapLcl
f: Lambda

. . .
Join

Split
n: Int

Figure 2. Class diagram of the Lift IR.

4.1 Organization of Classes
Programs are represented as graphs where nodes are imple-
mented as objects. The use of a graph-based representation
avoids the problem of performing extensive renaming when
transforming functional programs [13]. The class diagram of
the Lift IR in Figure 2 shows two main classes: expressions
(Expr) and function declarations (FunDecl).

Expressions represent values and have a type associated
with. Expressions are either literals, parameters or function
calls. Literals represent compile time known constants such
as 3.4f, arrays or tuples. Parameters are used inside functions
and their values are the arguments of a function call. Finally,
function calls connect a function to be called (a FunDecl)
with its arguments (Exprs).

Function Declarations correspond to either a lambda, a
predefined pattern or a user function. Lambdas are anony-
mous function declarations with parameters and a body which
is evaluated when the lambda is called. A pattern is a built-in
function such as map or reduce. The UserFun corresponds to
user-defined functions expressed in a subset of the C language
operating on non-array data types.

4.2 Lift IR Example
Figure 3 shows the Lift IR of the dot-product program from
Listing 1. The plain arrows show how object reference each
other. The top left node labeled Lambda2 is the root node
of the graph taking two parameters and its body implements
dot-product as a sequence of function calls.

The dashed arrows visualizes the way the data flows
through the IR. The inputs x and y are first used as an input
to the zip function which is then fed into a call to split(128).
Then the the results of the split is fed into the mapWrg
function. The function which is applied to each chunk of 128

77

• Expressions
represent values
and have a type
associated with.

• Function
declarations
represent callable
entities: lambdas,
patterns and user
functions.

16/26

Dot product example

For more dot product variations, see
src/test/tutorial/applications/DotProduct.scala

17/26

Corresponding AST

Param Param

Lambda2

param_0 param_1

FunCall
body

FunCall

arg_0

Join

f

FunCall

arg_0

MapWrg

f

Split(1024)
f

FunCall

arg_0

arg_0 arg_1

Zip
f

Lambda1

f

Param

param_0

FunCall
body

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

arg_0

Split(4)
f

Lambda1

f

Param

param_0

FunCall
body

FunCall

arg_0

toGlobal

f

Value(0.0f)

arg_0

FunCall

arg_1

ReduceSeq

f

arg_0

MapSeq

f

Lambda1

f

Param

param_0

FunCall
body

FunCall

arg_0

FunCall

arg_1

UserFun(mult)

f

arg_0

Get(0)
f

arg_0

Get(1)
f

UserFun(add)

f

MapSeq

f

UserFun(id)

f

18/26

lift compilation

Compilation stages

Param Param

Lambda2

param_0 param_1

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapWrg

f

Split(128)
f

FunCall

arg_0

arg_0 arg_1

Zip

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

Split(1)
f

FunCall

arg_0

FunCall

arg_0

Iterate

f

Joinf

FunCall

arg_0

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun
(multAndAdd)

f

MapSeq

f

UserFun(id)

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun(add)

f

MapSeq

f

UserFun(id)

f

toGlobal

f

MapSeq

f

UserFun(id)

f

x y

iteration

glbToLcl

lclToGlb

dataflow

class field

(6)

Figure 3. Lift IR for dot-product example

elements is represented as a lambda which processes the input
in three steps. First, the data is moved from global to local
memory by performing a partial reduction (labeled glbToLcl).
Then, the data flows to a function which iteratively reduces
the elements in local memory (iteration). Finally, the data is
moved back from local memory to global memory(lclToGlb),
exits the mapWrg and the last join is applied to return the
final result.

4.3 Lambda and Data Flow
Lambdas appear in several places in the IR graph and encode
the data flow explicitly. For example, focusing on the iteration
part of the graph, we see that a Lambda node is used below

Lift IR
Type

Analysis
Memory

Allocation
Array

Accesses
Barrier

Elimination
OpenCL Code

Generation

Figure 4. Overview of the Lift compilation stages.

the Iterate node. To understand what the lambda does, we
can look back at Listing 1, lines 4– 7 copied here:

iterate6(join ◦ mapLcl0(. . .) ◦ split2)

This notation is only syntactic sugar for:

iterate6(λ p . join(mapLcl0(. . ., split2(p))))

The lambda (λ) makes the data flow explicit, i.e. the iterate
pattern passing its input via the parameter p first to split
which then passes it to mapLcl and join.

5. Compilation Flow
Figure 4 shows the stages involved in compiling the Lift IR
into efficient OpenCL code. The compilation starts by ana-
lyzing type information which is key for high-performance
code generation. This information is used heavily in the sub-
sequent memory allocation and array accesses generation
passes. The barrier elimination stage minimizes the number
of synchronizations required for correct parallel code. Finally,
the OpenCL code generation performs a last final optimiza-
tions to simplify control flow.

5.1 Type System and Analysis
The Lift compiler implements a dependent type system which
keeps track of the length and shapes of nested arrays. Besides
array types, the type system supports scalar types (e.g.,
int, float), vector types, and tuple types. While vector types
correspond to OpenCL vector data types (e.g., int2, float4)
tuples are represented as structs. Array types can be nested
to represent multi-dimensional arrays. In addition, arrays
carry information about the length of each dimension in their
type. These length information are arithmetic expressions of
operations on natural numbers larger than zero and named
variables which are unknown at compiler time. For example,
given an array x of length n where the type of the elements is
float we write the type of x as [float]n. Applying the array x
to the split m pattern results in the type [[float]m]n/m.

The types of function bodies are automatically inferred
from the parameter types by traversing the graph following
the data flow, as indicated by the dotted arrows in Figure 3.

5.2 Memory Allocation
A straightforward memory allocator would allocate a new
output buffer for every single FunCall node. However, this
would be very inefficient as data layout patterns, such as
split, only change the way memory is accessed but do not
modify the actual data. Memory allocation is, therefore,
only performed for functions actually modifying data. These
are FunCall nodes where the called function contains a
UserFun node, such as the UserFun(add) node in Figure 3.

78

• Compile: src/main/opencl/executor/Compile.scala:44
• Type checking: src/main/ir/TypeChecker.scala:39

• Example Pattern.checkType():
src/main/opencl/ir/pattern/ReduceSeq.scala:11

• Generate: src/main/opencl/generator/OpenCLGenerator.scala:176
• Memory address space inference:
src/main/opencl/ir/InferOpenCLAddressSpace.scala:18

• Domain-specific range inference:
src/main/opencl/generator/RangesAndCounts.scala:26

• Memory allocation: src/main/ir/Type.scala:559
• Loop unrolling: src/main/opencl/generator/ShouldUnroll.scala:50
• Barrier elimination:
src/main/opencl/generator/BarrierElimination.scala:41

• Views (array Accesses): src/main/ir/view/View.scala:585

19/26

lift type system

Param Param

Lambda2

param_0 param_1

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapWrg

f

Split(128)
f

FunCall

arg_0

arg_0 arg_1

Zip

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

Split(1)
f

FunCall

arg_0

FunCall

arg_0

Iterate

f

Joinf

FunCall

arg_0

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun
(multAndAdd)

f

MapSeq

f

UserFun(id)

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun(add)

f

MapSeq

f

UserFun(id)

f

toGlobal

f

MapSeq

f

UserFun(id)

f

x y

iteration

glbToLcl

lclToGlb

dataflow

class field

(6)

Figure 3. Lift IR for dot-product example

elements is represented as a lambda which processes the input
in three steps. First, the data is moved from global to local
memory by performing a partial reduction (labeled glbToLcl).
Then, the data flows to a function which iteratively reduces
the elements in local memory (iteration). Finally, the data is
moved back from local memory to global memory(lclToGlb),
exits the mapWrg and the last join is applied to return the
final result.

4.3 Lambda and Data Flow
Lambdas appear in several places in the IR graph and encode
the data flow explicitly. For example, focusing on the iteration
part of the graph, we see that a Lambda node is used below

Lift IR
Type

Analysis
Memory

Allocation
Array

Accesses
Barrier

Elimination
OpenCL Code

Generation

Figure 4. Overview of the Lift compilation stages.

the Iterate node. To understand what the lambda does, we
can look back at Listing 1, lines 4– 7 copied here:

iterate6(join ◦ mapLcl0(. . .) ◦ split2)

This notation is only syntactic sugar for:

iterate6(λ p . join(mapLcl0(. . ., split2(p))))

The lambda (λ) makes the data flow explicit, i.e. the iterate
pattern passing its input via the parameter p first to split
which then passes it to mapLcl and join.

5. Compilation Flow
Figure 4 shows the stages involved in compiling the Lift IR
into efficient OpenCL code. The compilation starts by ana-
lyzing type information which is key for high-performance
code generation. This information is used heavily in the sub-
sequent memory allocation and array accesses generation
passes. The barrier elimination stage minimizes the number
of synchronizations required for correct parallel code. Finally,
the OpenCL code generation performs a last final optimiza-
tions to simplify control flow.

5.1 Type System and Analysis
The Lift compiler implements a dependent type system which
keeps track of the length and shapes of nested arrays. Besides
array types, the type system supports scalar types (e.g.,
int, float), vector types, and tuple types. While vector types
correspond to OpenCL vector data types (e.g., int2, float4)
tuples are represented as structs. Array types can be nested
to represent multi-dimensional arrays. In addition, arrays
carry information about the length of each dimension in their
type. These length information are arithmetic expressions of
operations on natural numbers larger than zero and named
variables which are unknown at compiler time. For example,
given an array x of length n where the type of the elements is
float we write the type of x as [float]n. Applying the array x
to the split m pattern results in the type [[float]m]n/m.

The types of function bodies are automatically inferred
from the parameter types by traversing the graph following
the data flow, as indicated by the dotted arrows in Figure 3.

5.2 Memory Allocation
A straightforward memory allocator would allocate a new
output buffer for every single FunCall node. However, this
would be very inefficient as data layout patterns, such as
split, only change the way memory is accessed but do not
modify the actual data. Memory allocation is, therefore,
only performed for functions actually modifying data. These
are FunCall nodes where the called function contains a
UserFun node, such as the UserFun(add) node in Figure 3.

78

• Lift has a dependent type system
• Scalar types: int, float, etc
• Vector types corresponding to OpenCL types int2, float4, etc
• Tuples

• Represented as structs in the generated OpenCL code
• Arrays

• Can be nested
• Carry information about the size and capacity of each dimension
in their type

• This information is represented by arithmetic expressions (more
on this later)

20/26

Memory allocation

Param Param

Lambda2

param_0 param_1

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapWrg

f

Split(128)
f

FunCall

arg_0

arg_0 arg_1

Zip

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

Split(1)
f

FunCall

arg_0

FunCall

arg_0

Iterate

f

Joinf

FunCall

arg_0

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun
(multAndAdd)

f

MapSeq

f

UserFun(id)

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun(add)

f

MapSeq

f

UserFun(id)

f

toGlobal

f

MapSeq

f

UserFun(id)

f

x y

iteration

glbToLcl

lclToGlb

dataflow

class field

(6)

Figure 3. Lift IR for dot-product example

elements is represented as a lambda which processes the input
in three steps. First, the data is moved from global to local
memory by performing a partial reduction (labeled glbToLcl).
Then, the data flows to a function which iteratively reduces
the elements in local memory (iteration). Finally, the data is
moved back from local memory to global memory(lclToGlb),
exits the mapWrg and the last join is applied to return the
final result.

4.3 Lambda and Data Flow
Lambdas appear in several places in the IR graph and encode
the data flow explicitly. For example, focusing on the iteration
part of the graph, we see that a Lambda node is used below

Lift IR
Type

Analysis
Memory

Allocation
Array

Accesses
Barrier

Elimination
OpenCL Code

Generation

Figure 4. Overview of the Lift compilation stages.

the Iterate node. To understand what the lambda does, we
can look back at Listing 1, lines 4– 7 copied here:

iterate6(join ◦ mapLcl0(. . .) ◦ split2)

This notation is only syntactic sugar for:

iterate6(λ p . join(mapLcl0(. . ., split2(p))))

The lambda (λ) makes the data flow explicit, i.e. the iterate
pattern passing its input via the parameter p first to split
which then passes it to mapLcl and join.

5. Compilation Flow
Figure 4 shows the stages involved in compiling the Lift IR
into efficient OpenCL code. The compilation starts by ana-
lyzing type information which is key for high-performance
code generation. This information is used heavily in the sub-
sequent memory allocation and array accesses generation
passes. The barrier elimination stage minimizes the number
of synchronizations required for correct parallel code. Finally,
the OpenCL code generation performs a last final optimiza-
tions to simplify control flow.

5.1 Type System and Analysis
The Lift compiler implements a dependent type system which
keeps track of the length and shapes of nested arrays. Besides
array types, the type system supports scalar types (e.g.,
int, float), vector types, and tuple types. While vector types
correspond to OpenCL vector data types (e.g., int2, float4)
tuples are represented as structs. Array types can be nested
to represent multi-dimensional arrays. In addition, arrays
carry information about the length of each dimension in their
type. These length information are arithmetic expressions of
operations on natural numbers larger than zero and named
variables which are unknown at compiler time. For example,
given an array x of length n where the type of the elements is
float we write the type of x as [float]n. Applying the array x
to the split m pattern results in the type [[float]m]n/m.

The types of function bodies are automatically inferred
from the parameter types by traversing the graph following
the data flow, as indicated by the dotted arrows in Figure 3.

5.2 Memory Allocation
A straightforward memory allocator would allocate a new
output buffer for every single FunCall node. However, this
would be very inefficient as data layout patterns, such as
split, only change the way memory is accessed but do not
modify the actual data. Memory allocation is, therefore,
only performed for functions actually modifying data. These
are FunCall nodes where the called function contains a
UserFun node, such as the UserFun(add) node in Figure 3.

78

• The naive approach would be to allocate a new output buffer for
every FunCall AST node

• We only allocate memory to the nodes where the called function
contains a UserFun

• The address space is inferred from FunCall

21/26

Memory allocation

Param Param

Lambda2

param_0 param_1

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapWrg

f

Split(128)
f

FunCall

arg_0

arg_0 arg_1

Zip

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

Split(1)
f

FunCall

arg_0

FunCall

arg_0

Iterate

f

Joinf

FunCall

arg_0

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun
(multAndAdd)

f

MapSeq

f

UserFun(id)

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun(add)

f

MapSeq

f

UserFun(id)

f

toGlobal

f

MapSeq

f

UserFun(id)

f

x y

iteration

glbToLcl

lclToGlb

dataflow

class field

(6)

Figure 3. Lift IR for dot-product example

elements is represented as a lambda which processes the input
in three steps. First, the data is moved from global to local
memory by performing a partial reduction (labeled glbToLcl).
Then, the data flows to a function which iteratively reduces
the elements in local memory (iteration). Finally, the data is
moved back from local memory to global memory(lclToGlb),
exits the mapWrg and the last join is applied to return the
final result.

4.3 Lambda and Data Flow
Lambdas appear in several places in the IR graph and encode
the data flow explicitly. For example, focusing on the iteration
part of the graph, we see that a Lambda node is used below

Lift IR
Type

Analysis
Memory

Allocation
Array

Accesses
Barrier

Elimination
OpenCL Code

Generation

Figure 4. Overview of the Lift compilation stages.

the Iterate node. To understand what the lambda does, we
can look back at Listing 1, lines 4– 7 copied here:

iterate6(join ◦ mapLcl0(. . .) ◦ split2)

This notation is only syntactic sugar for:

iterate6(λ p . join(mapLcl0(. . ., split2(p))))

The lambda (λ) makes the data flow explicit, i.e. the iterate
pattern passing its input via the parameter p first to split
which then passes it to mapLcl and join.

5. Compilation Flow
Figure 4 shows the stages involved in compiling the Lift IR
into efficient OpenCL code. The compilation starts by ana-
lyzing type information which is key for high-performance
code generation. This information is used heavily in the sub-
sequent memory allocation and array accesses generation
passes. The barrier elimination stage minimizes the number
of synchronizations required for correct parallel code. Finally,
the OpenCL code generation performs a last final optimiza-
tions to simplify control flow.

5.1 Type System and Analysis
The Lift compiler implements a dependent type system which
keeps track of the length and shapes of nested arrays. Besides
array types, the type system supports scalar types (e.g.,
int, float), vector types, and tuple types. While vector types
correspond to OpenCL vector data types (e.g., int2, float4)
tuples are represented as structs. Array types can be nested
to represent multi-dimensional arrays. In addition, arrays
carry information about the length of each dimension in their
type. These length information are arithmetic expressions of
operations on natural numbers larger than zero and named
variables which are unknown at compiler time. For example,
given an array x of length n where the type of the elements is
float we write the type of x as [float]n. Applying the array x
to the split m pattern results in the type [[float]m]n/m.

The types of function bodies are automatically inferred
from the parameter types by traversing the graph following
the data flow, as indicated by the dotted arrows in Figure 3.

5.2 Memory Allocation
A straightforward memory allocator would allocate a new
output buffer for every single FunCall node. However, this
would be very inefficient as data layout patterns, such as
split, only change the way memory is accessed but do not
modify the actual data. Memory allocation is, therefore,
only performed for functions actually modifying data. These
are FunCall nodes where the called function contains a
UserFun node, such as the UserFun(add) node in Figure 3.

78

input :Lambda expression representing a program
output :Expressions annotated with address space information

inferAddressSpaceProg(lambda)
1 foreach param in lambda.params do
2 if param.type is ScalarType then param.as = PrivateMemory;
3 else param.as = GlobalMemory;

4 inferASExpr(lambda.body, null)

inferASExpr(expr, writeTo)
5 switch expr.type do
6 case Literal expr.as = PrivateMemory;
7 case Param assert (expr.as != null);
8 case FunCall
9 foreach arg in expr.args do

10 inferASExpr(arg, writeTo)

11 switch expr.f.type do
12 case is UserFun
13 if writeTo != null then expr.as = writeTo;
14 else expr.as = inferASFromArgs(expr.args);

15 case is Lambda inferASFunCall(expr.f, expr.args, writeTo);
16 case is toPrivate
17 inferASFunCall(expr.f.lambda, expr.args, PrivateMemory);
18 case is toLocal
19 inferASFunCall(expr.f.lambda, expr.args, LocalMemory);
20 case is toGlobal
21 inferASFunCall(expr.f.lambda, expr.args, GlobalMemory);
22 case is Reduce
23 inferASFunCall(expr.f.f, expr.args, expr.f.init.as);
24 case is Iterate or Map
25 inferASFunCall(expr.f.f, expr.args, writeTo);
26 otherwise do expr.as = expr.args.as;

inferASFunCall(lambda, args, writeTo)
27 foreach p in lambda.params and a in args do p.as = a.as;
28 inferASExpr(lambda.body, writeTo)

Algorithm 1: Recursive address space inference algorithm

For these nodes, the compiler uses the array length informa-
tion from the type to compute the size of the memory buffer
required. When a data layout pattern is encountered, an inter-
nal data structure called view is created, which remembers
how memory should be accessed by the subsequent functions.
Details of the views are discussed in subsection 5.3.

Memory is allocated in one of three OpenCL address
spaces. Algorithm 1 determines the address space of each
allocation. First, each parameters of the lambda expression
are processed where scalar are assigned to Private memory
and Global memory is used for all others as required by
OpenCL. Then, the body of the lambda is visited in line 4.

The function inferASExpr determines the address space
of a given expression based on its second parameter writeTo
or its function arguments in case writeTo is null. As we
have exactly three subclasses of Expr we consider these
as separate cases: Literals reside in the Private memory;
Params have their address space set when their function is
called, as we have already seen above; FunCalls determine
the address space of their arguments and then investigate
which function was called. UserFun take their address space

from the writeTo argument or inferred it from the address
space of its arguments; if all arguments have the same address
space, the user function will write into the same address space,
otherwise it writes to global memory by default.

The toPrivate, toLocal, toGlobal functions change the
writeTo argument before recursing within their nested func-
tion to produce the output in a specific address space. Finally,
Reduce directly writes into the memory of the initializer ex-
pression and has, therefore, the same address space.

5.3 Multi-Dimensional Array Accesses
In the Lift IR, arrays are not accessed explicitly but implicitly;
the patterns determine which thread accesses which element
in memory. This design simplifies the process of lowering
high-level programs to the Lift IR and guarantees that data
races are avoided by construction since no arbitrary accesses
into memory are permitted. However, this introduces two
main challenges when compiling the Lift IR: First, avoiding
unnecessary intermediate results arising from function which
change only the data layout; And, secondly, generating
efficient accesses to multi-dimensional arrays which have
a flat representation in memory.

Example Consider the following dot product example, par-
tially copied again here for convenience:
1 (join ◦ mapWrg0(. . .

2 join ◦ mapLcl0(. . .

3 reduceSeq(λ(a,xy) 7→ a + (xy0 × xy1),0)) ◦ split
2

4) ◦ split128)(zip(x, y))

We are interested in understanding how the arrays x and y
are accessed inside the lambda in line 3 and, ultimately,

how to generate code to express these accesses. This is not
obvious, as the arrays are first combined using zip and then
split into chunks of size 128 in line 4. When processing a
single chunk inside a work group (mapWrg in line 1), the
array is further split into smaller chunks of two elements
(line 3) and every local thread (mapLcl in line 2) performs
a sequential reduction. Individual elements of the arrays are
accessed using the xy variable. The xy0 indicates an access to
the first element of the tuple, which is an element of array x.

View Construction A view is an internal data structure
which stores information for generating array accesses. Func-
tions that only change the data layout of an array produce a
view instead of allocating and writing to a new array.

To generate the array access for the xy0 expression from
our example, we traverse the IR following the data flow. For
each node we construct a view representing how the particular
node influences the array access. The resulting view structure
is shown on the left hand side of Figure 5 where each view is
connected to its predecessor view. For example, the ZipView
has two predecessors, since the two arrays x and y have been
combined. Each map pattern results in a ArrayAccessView
which emulates an access in one dimension of the array
by the map function. Nested ArrayAccessViews, therefore,
correspond to accesses to multi-dimensional arrays.

79

22/26

Array accesses

Param Param

Lambda2

param_0 param_1

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapWrg

f

Split(128)
f

FunCall

arg_0

arg_0 arg_1

Zip

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

Split(1)
f

FunCall

arg_0

FunCall

arg_0

Iterate

f

Joinf

FunCall

arg_0

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun
(multAndAdd)

f

MapSeq

f

UserFun(id)

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun(add)

f

MapSeq

f

UserFun(id)

f

toGlobal

f

MapSeq

f

UserFun(id)

f

x y

iteration

glbToLcl

lclToGlb

dataflow

class field

(6)

Figure 3. Lift IR for dot-product example

elements is represented as a lambda which processes the input
in three steps. First, the data is moved from global to local
memory by performing a partial reduction (labeled glbToLcl).
Then, the data flows to a function which iteratively reduces
the elements in local memory (iteration). Finally, the data is
moved back from local memory to global memory(lclToGlb),
exits the mapWrg and the last join is applied to return the
final result.

4.3 Lambda and Data Flow
Lambdas appear in several places in the IR graph and encode
the data flow explicitly. For example, focusing on the iteration
part of the graph, we see that a Lambda node is used below

Lift IR
Type

Analysis
Memory

Allocation
Array

Accesses
Barrier

Elimination
OpenCL Code

Generation

Figure 4. Overview of the Lift compilation stages.

the Iterate node. To understand what the lambda does, we
can look back at Listing 1, lines 4– 7 copied here:

iterate6(join ◦ mapLcl0(. . .) ◦ split2)

This notation is only syntactic sugar for:

iterate6(λ p . join(mapLcl0(. . ., split2(p))))

The lambda (λ) makes the data flow explicit, i.e. the iterate
pattern passing its input via the parameter p first to split
which then passes it to mapLcl and join.

5. Compilation Flow
Figure 4 shows the stages involved in compiling the Lift IR
into efficient OpenCL code. The compilation starts by ana-
lyzing type information which is key for high-performance
code generation. This information is used heavily in the sub-
sequent memory allocation and array accesses generation
passes. The barrier elimination stage minimizes the number
of synchronizations required for correct parallel code. Finally,
the OpenCL code generation performs a last final optimiza-
tions to simplify control flow.

5.1 Type System and Analysis
The Lift compiler implements a dependent type system which
keeps track of the length and shapes of nested arrays. Besides
array types, the type system supports scalar types (e.g.,
int, float), vector types, and tuple types. While vector types
correspond to OpenCL vector data types (e.g., int2, float4)
tuples are represented as structs. Array types can be nested
to represent multi-dimensional arrays. In addition, arrays
carry information about the length of each dimension in their
type. These length information are arithmetic expressions of
operations on natural numbers larger than zero and named
variables which are unknown at compiler time. For example,
given an array x of length n where the type of the elements is
float we write the type of x as [float]n. Applying the array x
to the split m pattern results in the type [[float]m]n/m.

The types of function bodies are automatically inferred
from the parameter types by traversing the graph following
the data flow, as indicated by the dotted arrows in Figure 3.

5.2 Memory Allocation
A straightforward memory allocator would allocate a new
output buffer for every single FunCall node. However, this
would be very inefficient as data layout patterns, such as
split, only change the way memory is accessed but do not
modify the actual data. Memory allocation is, therefore,
only performed for functions actually modifying data. These
are FunCall nodes where the called function contains a
UserFun node, such as the UserFun(add) node in Figure 3.

78

• In lift IR, arrays are accessed implicitly based on the patterns
• This eliminates arbitrary memory accesses and the associated
problems

• However, expressing (efficient) pattern-transformed accesses is
not obvious

• ...which is where Views come to the rescue (but more on that
later)

23/26

Barrier elimination

Param Param

Lambda2

param_0 param_1

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapWrg

f

Split(128)
f

FunCall

arg_0

arg_0 arg_1

Zip

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

Split(1)
f

FunCall

arg_0

FunCall

arg_0

Iterate

f

Joinf

FunCall

arg_0

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun
(multAndAdd)

f

MapSeq

f

UserFun(id)

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun(add)

f

MapSeq

f

UserFun(id)

f

toGlobal

f

MapSeq

f

UserFun(id)

f

x y

iteration

glbToLcl

lclToGlb

dataflow

class field

(6)

Figure 3. Lift IR for dot-product example

elements is represented as a lambda which processes the input
in three steps. First, the data is moved from global to local
memory by performing a partial reduction (labeled glbToLcl).
Then, the data flows to a function which iteratively reduces
the elements in local memory (iteration). Finally, the data is
moved back from local memory to global memory(lclToGlb),
exits the mapWrg and the last join is applied to return the
final result.

4.3 Lambda and Data Flow
Lambdas appear in several places in the IR graph and encode
the data flow explicitly. For example, focusing on the iteration
part of the graph, we see that a Lambda node is used below

Lift IR
Type

Analysis
Memory

Allocation
Array

Accesses
Barrier

Elimination
OpenCL Code

Generation

Figure 4. Overview of the Lift compilation stages.

the Iterate node. To understand what the lambda does, we
can look back at Listing 1, lines 4– 7 copied here:

iterate6(join ◦ mapLcl0(. . .) ◦ split2)

This notation is only syntactic sugar for:

iterate6(λ p . join(mapLcl0(. . ., split2(p))))

The lambda (λ) makes the data flow explicit, i.e. the iterate
pattern passing its input via the parameter p first to split
which then passes it to mapLcl and join.

5. Compilation Flow
Figure 4 shows the stages involved in compiling the Lift IR
into efficient OpenCL code. The compilation starts by ana-
lyzing type information which is key for high-performance
code generation. This information is used heavily in the sub-
sequent memory allocation and array accesses generation
passes. The barrier elimination stage minimizes the number
of synchronizations required for correct parallel code. Finally,
the OpenCL code generation performs a last final optimiza-
tions to simplify control flow.

5.1 Type System and Analysis
The Lift compiler implements a dependent type system which
keeps track of the length and shapes of nested arrays. Besides
array types, the type system supports scalar types (e.g.,
int, float), vector types, and tuple types. While vector types
correspond to OpenCL vector data types (e.g., int2, float4)
tuples are represented as structs. Array types can be nested
to represent multi-dimensional arrays. In addition, arrays
carry information about the length of each dimension in their
type. These length information are arithmetic expressions of
operations on natural numbers larger than zero and named
variables which are unknown at compiler time. For example,
given an array x of length n where the type of the elements is
float we write the type of x as [float]n. Applying the array x
to the split m pattern results in the type [[float]m]n/m.

The types of function bodies are automatically inferred
from the parameter types by traversing the graph following
the data flow, as indicated by the dotted arrows in Figure 3.

5.2 Memory Allocation
A straightforward memory allocator would allocate a new
output buffer for every single FunCall node. However, this
would be very inefficient as data layout patterns, such as
split, only change the way memory is accessed but do not
modify the actual data. Memory allocation is, therefore,
only performed for functions actually modifying data. These
are FunCall nodes where the called function contains a
UserFun node, such as the UserFun(add) node in Figure 3.

78

• We start by synchronizing after each occurrence of a parallel Map

• Then we remove barriers one by one wherever we can infer that
they are not required:

• When data is not shared (i.e. Split, Join, Gather and Scatter
are not used)

• When the two parallel Maps are executed independently in
separate branches of Zip

24/26

OpenCL code generation

Param Param

Lambda2

param_0 param_1

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapWrg

f

Split(128)
f

FunCall

arg_0

arg_0 arg_1

Zip

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

Split(1)
f

FunCall

arg_0

FunCall

arg_0

Iterate

f

Joinf

FunCall

arg_0

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun
(multAndAdd)

f

MapSeq

f

UserFun(id)

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun(add)

f

MapSeq

f

UserFun(id)

f

toGlobal

f

MapSeq

f

UserFun(id)

f

x y

iteration

glbToLcl

lclToGlb

dataflow

class field

(6)

Figure 3. Lift IR for dot-product example

elements is represented as a lambda which processes the input
in three steps. First, the data is moved from global to local
memory by performing a partial reduction (labeled glbToLcl).
Then, the data flows to a function which iteratively reduces
the elements in local memory (iteration). Finally, the data is
moved back from local memory to global memory(lclToGlb),
exits the mapWrg and the last join is applied to return the
final result.

4.3 Lambda and Data Flow
Lambdas appear in several places in the IR graph and encode
the data flow explicitly. For example, focusing on the iteration
part of the graph, we see that a Lambda node is used below

Lift IR
Type

Analysis
Memory

Allocation
Array

Accesses
Barrier

Elimination
OpenCL Code

Generation

Figure 4. Overview of the Lift compilation stages.

the Iterate node. To understand what the lambda does, we
can look back at Listing 1, lines 4– 7 copied here:

iterate6(join ◦ mapLcl0(. . .) ◦ split2)

This notation is only syntactic sugar for:

iterate6(λ p . join(mapLcl0(. . ., split2(p))))

The lambda (λ) makes the data flow explicit, i.e. the iterate
pattern passing its input via the parameter p first to split
which then passes it to mapLcl and join.

5. Compilation Flow
Figure 4 shows the stages involved in compiling the Lift IR
into efficient OpenCL code. The compilation starts by ana-
lyzing type information which is key for high-performance
code generation. This information is used heavily in the sub-
sequent memory allocation and array accesses generation
passes. The barrier elimination stage minimizes the number
of synchronizations required for correct parallel code. Finally,
the OpenCL code generation performs a last final optimiza-
tions to simplify control flow.

5.1 Type System and Analysis
The Lift compiler implements a dependent type system which
keeps track of the length and shapes of nested arrays. Besides
array types, the type system supports scalar types (e.g.,
int, float), vector types, and tuple types. While vector types
correspond to OpenCL vector data types (e.g., int2, float4)
tuples are represented as structs. Array types can be nested
to represent multi-dimensional arrays. In addition, arrays
carry information about the length of each dimension in their
type. These length information are arithmetic expressions of
operations on natural numbers larger than zero and named
variables which are unknown at compiler time. For example,
given an array x of length n where the type of the elements is
float we write the type of x as [float]n. Applying the array x
to the split m pattern results in the type [[float]m]n/m.

The types of function bodies are automatically inferred
from the parameter types by traversing the graph following
the data flow, as indicated by the dotted arrows in Figure 3.

5.2 Memory Allocation
A straightforward memory allocator would allocate a new
output buffer for every single FunCall node. However, this
would be very inefficient as data layout patterns, such as
split, only change the way memory is accessed but do not
modify the actual data. Memory allocation is, therefore,
only performed for functions actually modifying data. These
are FunCall nodes where the called function contains a
UserFun node, such as the UserFun(add) node in Figure 3.

78

• The AST is traversed recursively

• No OpenCL code is generated for the patterns that only affect
View

• Low-level optimizations such as loop unrolling are applied to
simplify the control flow using the information on ranges
inferred from the patterns such as mapLcl

25/26

The end

Source code, installation manual and slides are available at
http://www.lift-project.org/ispass2018

26/26

http://www.lift-project.org/ispass2018

	lift – An Intermediate Language
	Writing an Application
	lift Intermediate Representation
	lift compilation

