Lift: The Language, The IR and Code Generation

Naums Mogers, Larisa Stoltzfus
April 2nd, 2018

University of Edinburgh

Table of contents

1. LIFT — An Intermediate Language
2. Writing a LIFT Application
3. LIFT Intermediate Representation

4. LIFT Compilation

Source code, installation manual and slides are available at
http://www.lift-project.org/ispass2018

1/26

http://www.lift-project.org/ispass2018

LIFT — An Intermediate Language

Algorithmic Patterns

mapSeq(f,|w [~ [x[x]) = [fen[fo] - [re]
reduceSeq(z, f,’ Xn | Ixz | X1 ‘) = ’f(-~-(f(f(z,x1), X)), xn)‘
i [~ e[) =[] T=]]
iterate”(f,[v |- [x[xi) = £ ([][[n)

2/26

Data Layout Patterns

el T T T -

jOin(’xl |x2 ||H|||‘ ’|||x \)

- Do not perform any computation

- Reorganize the data layout (View)

3/26

Data Layout Patterns

gather(f,| xr0 | Xf(2) | | Xt |) :’ X | X | | Xn ‘
scatter(f,| xi | X | | Xn ‘) = ’ Xf(1) | Xf@) | | Xfn) ‘

1 val transposeFunction = (outerSize: ArithExpr, innerSize: ArithExpr) =>

2 (i: ArithExpr, _) => {

3 val col = (i % innerSize) * outerSize

4 val row = i/ innerSize

5

6 row + col

7}

val Transpose = Split(N) o Gather(IndexFunction.transposeFunction(M, N)) o Join()

For examples of Gather and Scatter indexing functions, see
src/main/ir/ast/package.scala

426

Data Layout Patterns

zip(| X1 |xz|--~|xn |,|y1 |yz |---|yn |)

= | (x1,y1) | (x2,y2) | | (Xn:Yn) |

get;((x1, x2,..., X)) = X

Slide(size,step,|x] |x2||||||||xn |)
step

: cee
= x1| X |... ce ...|... ce ...|...| |...| X,

5/26

Parallel Patterns

- mapWrg(0 — 2)
- mapLcl(0 —2)
- mapGlb(0 — 2)

- mapWarp
- mapLane

6/26

Address Space Patterns

toGlobal toLocal toPrivate

MapWrg(MapLcl(toLocal(MapSeq(id))) $ X

- These primitives decouple the decision of where to store data
from the decision of how the data is produced.

7/26

Vectorize Pattern

—_— .
asVector() = X1, X2,...,X,, X;1s scalar

e
asScalar(xy, x5, ..., x,) = -

- During code generation, the LIFT compiler transforms f into a
vectorized form using OpenCL built-in vectorized arithmetic
operations whenever possible.

- In other cases, f is applied to each scalar in the vector.

8/26

Low-level IRs

ALl LIFT primitives are either:

- High-level, capturing rich information about the algorithmic
structure of programs

- Low-level and platform-specific (OpenCL, OpenCL for FPGAs,
OpenMP, etc)

9/26

Writing an Application

General Steps

- Determine input parameters

- Initialise input data
- If testing, initialise comparison data

- Craft or translate the algorithm of interest
- Create an OpenCL kernel from your algorithm

10/26

Data Input to Lift Algorithms

- Lift can take in arrays or scalars as input parameters

1 val liftLambda = fun(

2 ArrayType(Float, Sizevar("N")),

3 ArrayType(Float, weights.length),
4

5

)

- Single entry point for arrays into functions
- Multiple arrays can be zipped together (but must be the same

size!)
1 fun(neighbourhood) =>
2 {
3
4 $ Zip(weights, neighbourhood)
5}

11/26

Initialising Data in Scala

- Create arrays of data to pass into Lift algorithms in Scala

val stencilValues = Array.tabulate(nx,ny,nz) { (i,j,k) => (1 + j + k + 1).toFloat }

- Our examples are all in unit tests, which include data to
compare against - often from the same algorithm in Scala

assertEquals(dotProductScala(lift,right), output.sum, 0.0f)

12/26

Developing an Algorithm

The goal is not for Lift to be programmed in directly.

However, functionality for new types of algorithms must be added in
and tested. In doing so, there are a few things to keep in mind:

- Lift allows multiple inputs, but there is only one data entry point
to the main algorithm (can contain tuples)

- The algorithm itself must eventually map values back to global
memory

- The result will be returned in a single array (however, this array
can also contain tuples)

13/26

Simple Example: 1D Jacobi Stencil

1 val jacobilDstencil = fun(

2 ArrayType(Float, N),

3 (input) => {

4 Map(Reduce(add, 0.0f)) o
) Slide(3, 1) o

6 Pad(1, 1, clamp) $ input
7}

8)

14/26

Creating an OpenCL kernel

- To compile your Lift kernel to OpenCL, run
[opencl.executor]Compile(<kernel>)
- This kernel can then be saved as a string or file

Compile(lambda)

- To execute the kernel straight away (compiling will happen
behind the scenes), run

[opencl.executor]Execute(<options>)
[Array[type]]l(lambda, ..inputs..)

val (output, runtime) = Execute(inputData.length)[Array[Float]](stencillLambda, inputData, stencilWeights

15/26

LIFT Intermediate Representation

Expr
type: Type
as: AddressSpace

AQLI

Literal FunCall

5 Param f: FunDecl

value: String args: Expr*
FunDecl
I

I | 1
Lambda UserFun
params: Param* Pattern .
body: Expr code: String

MapGlb

£: Lambda

Join

Split

n: Int

Class diagram

- Expressions
represent values
and have a type
associated with.

- Function
declarations
represent callable
entities: lambdas,
patterns and user
functions.

16/26

Dot product example

1 val dotProductLift = fun(

2 ArrayTypeWSWC(Float, N),

3 ArrayTypeWSWC(Float, N),

4 (left, right) => {

5 Join() o MapWrg(

6 Join() o

7 MapLc1(

8 toGlobal(MapSeq(id)) o
9 ReduceSeq(add, 0.0f) o
10 MapSeq(mult)) o

11 Split(4)

12) o Split(1024) $ Zip(left, right)
13 })

For more dot product variations, see

src/test/tutorial/applications/DotProduct.scala /
17126

Corresponding AST

LIFT compilation

Compilation stages
L IR Type Memory Array Barrier OpenCL Code
1T Analysis Allocatlon Accesses Elimination Generation

- Compile: src/main/opencl/executor/Compile.scala:44
- Type checking: src/main/ir/TypeChecker.scala:39
- Example Pattern.checkType():
src/main/opencl/ir/pattern/ReduceSeq.scala:11
- Generate: src/main/opencl/generator/OpenClLGenerator.scala:176
- Memory address space inference:
src/main/opencl/ir/InferOpenCLAddressSpace.scala:18
- Domain-specific range inference:
src/main/opencl/generator/RangesAndCounts.scala:26
- Memory allocation: src/main/ir/Type.scala:559
- Loop unrolling: src/main/opencl/generator/ShouldUnroll.scala:50
- Barrier elimination:
src/main/opencl/generator/BarrierElimination.scala:41
- Views (array Accesses): src/main/ir/view/View.scala:585

19/26

LIFT type system
LlFT R Type Memory Array Barrier OpenCL Code
Analysis Allocatlon Accesses Elimination Generation
- Lift has a dependent type system

- Scalar types: int, float, etc
- Vector types corresponding to OpenCL types int2, floaté, etc

- Tuples
- Represented as structs in the generated OpenCL code

- Arrays
- Can be nested
- Carry information about the size and capacity of each dimension

in their type
- This information is represented by arithmetic expressions (more

on this later)

20/26

Memory allocation
L R Type Memory Array Barrier OpenCL Code
1T Analysis Allocatlon Accesses Elimination Generation

- The naive approach would be to allocate a new output buffer for
every FunCall AST node

- We only allocate memory to the nodes where the called function
contains a UserFun

- The address space is inferred from FunCall

21/26

Memory allocation

Memory Array Barrier OpenCL Code
Allocation Accesses Elimination Generation

Type

Lo Analysis

ambda expression representing a program
xpressions annotated with address space information

input
output

inferAddressSpaceProg (lambda)

1 foreach param in lambda.params do

2 | if param.type is ScalarType then param.as = PrivateMemory:
3 | else param.as = GlobalMemory;

4 inferASExpr (lambda.body, null)

inferASExpr (expr; writeTo)

s switch expriype do

case Literal expr.as = PrivateMemory:
case Param assert (expras !=null);
s | ease FunCall

9 | | foreach arg in exprargs do

0 | inferASExpr (arg, writeTo)

1 | | switch exprfnype do

12 | | | caseis UserFun

3 if writeTo /= null then expr.as = writeTo;

u Lcm expras = inferASFromArgs (exprargs);

15 | | | caseis Lambda inferASFunCall (expr, exprargs, writeTo):
16 | | | caseis toPrivate

n inferASFunCall (exprflambda, exprargs, Pr 2
1 | | | caseis toLocal

w inferASFunCall (exprfilambda, exprargs, LocalMemory);
u | || easeistoGlobal

P inferASFunCall exprfilambda, exprargs, 0
2 case is Reduce

n inferASFunCall (exprff, exprargs, exprfinitas):

2 | | | easeis trerate or Map

25 inferASFunCall(exprfyf, exprargs, writeTo);

2 | | | otherwise do expras = exprargs.as;

inferASFunCall(lambda, args, writeTo)
1 foreach p in lambda.params and a in args do p.as = a.as;
2 inferASExpr (lambda.body, writeTo)

Algorithm 1: Recursive address space inference algorithm

22/26

Array accesses
L R Type Memory Array Barrier OpenCL Code
1T Analysis Allocatlon Accesses Elimination Generation

- In LIFT IR, arrays are accessed implicitly based on the patterns

- This eliminates arbitrary memory accesses and the associated
problems

- However, expressing (efficient) pattern-transformed accesses is
not obvious

..which is where Views come to the rescue (but more on that
later)

23/26

Barrier elimination
LlFT R Type Memory Array Barrier OpenCL Code
Analysis Allocatlon Accesses Elimination Generation

- We start by synchronizing after each occurrence of a parallel Map

- Then we remove barriers one by one wherever we can infer that
they are not required:

- When data is not shared (i.e. Split, Join, Gather and Scatter
are not used)

- When the two parallel Maps are executed independently in
separate branches of Zip

24/26

OpenCL code generation
L R Type Memory Array Barrier OpenCL Code
1T Analysis Allocatlon Accesses Elimination Generation

- The AST is traversed recursively

- No OpenCL code is generated for the patterns that only affect
View

- Low-level optimizations such as loop unrolling are applied to
simplify the control flow using the information on ranges
inferred from the patterns such as mapLcl

25/26

Source code, installation manual and slides are available at
http://www.lift-project.org/ispass2018

26/26

http://www.lift-project.org/ispass2018

	lift – An Intermediate Language
	Writing an Application
	lift Intermediate Representation
	lift compilation

