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Why Stencil Computations?

Medical Imaging

Stencil computations are a class of kernels 
which update neighboring array elements 
according to a fixed pattern, called stencil.

Frequently occur in:
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Lift's High-level Primitives

Can we express stencil 
computations in Lift?

Let's look at a simple stencil example...



What ARE Stencil Computations?

for (int i = 0; i < N ; i ++) { 
    int sum = 0; 
    for ( int j = -1; j <= 1; j ++) {
        int pos = i + j; 
        pos = pos < 0 ? 0 : pos;    
        pos = pos > N - 1 ? N - 1 : pos; 
        sum += A[ pos ]; }           
 B[ i ] = sum ; }

3-point-stencil.c
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Add specialized primitive:  Job done?
No Reuse 

Domain-specific 

Multidimensional? 

of existing primitives and optimizations

rather than generic

is it composable?
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Stencil computations in Lift

???

???
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map(         )

reduce(    )

split(n)

join

zip

3-point-stencil.lift

map

???

???
Reuse map

Simplicity

Multidimensional 

allows to reuse
existing rewrite rules

one primitive per task

easily composable



Boundary Handling Using Pad 
pad ( reindexing ) pad ( constant )

clamp(i, n) = (i <  0) ? 0  :
             ((i >= n) ? n-1:i)

pad(1,1,clamp, [a,b,c,d]) =
    [a,a,b,c,d,d]

pad-reindexing.lift

constant(i, n) = C

pad(1,1,constant, [a,b,c,d]) =
    [C,a,b,c,d,C]

pad-constant.lift

C C



Neighborhood Creation using Slide 
size

step

slide(3,1,[a,b,c,d,e]) =

[[a,b,c],[b,c,d],[c,d,e]]

slide-example.lift

...



Applying Stencil function using Map 

map(nbh =>
  reduce(add, 0.0f, nbh))

sum-neighborhoods.lift



Putting it Together

def stencil1D =
 fun(A =>
  map(reduce(add, 0.0f),
   slide(3,1,
    pad(1,1,clamp,A))))

stencil1D.lift

slide(n,s)

pad(l,r,b) map

pad

slide

map(         )

reduce(    )

split(n)

join

zip
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Multidimensional Boundary Handling using PAD 

pad2 = map(pad(l,r,b,pad(l,r,b,input)))

input

2
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input

Multidimensional Boundary Handling using PAD 2
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Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Compact LanguageAdvantages:

Decompose to Re-Compose

Reuse Rewrites Simple Compilation

map3(sum, slide3(3,1, pad3(1,1,clamp,input)))
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Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)      
join(map(map(f),
  split(n, A)))
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Optimization: Overlapped Tiling
overlap

Exploit Locality

Shared Memory
Fast memory can be 
used to cache tiles

Close neighborhoods
share elements that can
be grouped in tiles

tile containing three 
neighborhoods
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Overlapped Tiling as a rewrite rule
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Overlapped Tiling as a rewrite rule

map(f, slide(3,1,input)) 
join(map(tile ⇒ 
  map(f, slide(3,1,tile)),
    slide(u,v,input)))

u

v





Comparison with Hand-Optimized codes

Lift achieves the same performance 
as hand optimized code

higher is better



Comparison with polyhedral compilation

Lift outperforms state-of-the-art 
optimizing compilers 

higher is better



2 Primitives

1 Rewrite Rule

pad, slide

overlapped tiling

We added:

Stencil Computations in LIft

High-Level IR



Lift is open Source!

lift-project.org

Bastian Hagedorn: 

Paper CGO Artifact Source Code

more info at:

b.hagedorn@wwu.de


