
High Performance Stencil Code Generation with Lift
Bastian Hagedorn | Larisa Stoltzfus | Michel Steuwer | Sergei Gorlatch | Christophe Dubach

Why Stencil Computations?

Medical Imaging

Stencil computations are a class of kernels
which update neighboring array elements
according to a fixed pattern, called stencil.

Frequently occur in:

Machine Learning PDE Solvers

Physics Simulations

Why Stencil Computations?

Medical Imaging

Frequently occur in:

Machine Learning PDE Solvers

Physics Simulations

2016

68%49%

Stencil compute time:

HPC Center
Stuttgart

HPC Center
München

2017

Yet Another Stencil Paper?

2011

CGO'12ICS'09 CGO'15

20072005
...

2015

CLUSTER'13SC'10

CLUSTER'17

WOLFHPC'16

ICS'05

PLDI'07

2009 2013 2018

CGO'18

Domain Specific Languages
PATUS Pochoir PARTANS Halide ... DSL

Exploiting Domain Knowledge
DSLPATUS

Multicore
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL

Pochoir PARTANS Halide ...

... Hardware

Exploiting Domain Knowledge
Stencil DSLs

Multicore
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL ... Hardware

Exploiting Domain Knowledge
Stencil DSLs

Multicore
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL ... Hardware

Linear Algebra DSLs N-Body DSLs ...

approaching Performance Portability

HardwareMulticore
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL ...

Universal High Performance Code Generator

Stencil DSLsLinear Algebra DSLs N-Body DSLs ...

approaching Performance Portability

HardwareMulticore
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL ...

Lift

Stencil DSLsLinear Algebra DSLs N-Body DSLs ...

HardwareMulticore
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL ...

DSL DSL DSL
Lift

High-Level IR

HardwareMulticore
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL ...

DSL DSL DSL
Lift

High-Level IR

HardwareMulticore
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL ...

Explore Optimizations
by rewriting

[CASES'16]

DSL DSL DSL
Lift

High-Level IR

HardwareMulticore
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL ...

Low-Level Program

Explore Optimizations
by rewriting

[CASES'16]

DSL DSL DSL
Lift

High-Level IR

HardwareMulticore
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL ...

Low-Level Program

Explore Optimizations
by rewriting

Code Generation
[CGO'17]

[CASES'16]

DSL DSL DSL
Lift

map()

reduce()

split(n)

join

zip

Lift's High-level Primitives

map()

reduce()

split(n)

join

zip a b

dotproduct.lift

* +

Lift's High-level Primitives

map()

reduce()

split(n)

join

zip a b

dotproduct.lift

* +

Lift's High-level Primitives

reduce(+,0, map(*, zip(a,b)))

reduce(+,0, map(*, zip(a,b)))

map()

reduce()

split(n)

join

zip a b

dotproduct.lift

* +

Lift's High-level Primitives

map()

reduce()

split(n)

join

zip a b

reduce(+,0, map(*, zip(a,b)))

dotproduct.lift

* +

Lift's High-level Primitives

map()

reduce()

split(n)

join

zip

stencil.lift?

Lift's High-level Primitives

Can we express stencil
computations in Lift?

Let's look at a simple stencil example...

What ARE Stencil Computations?

for (int i = 0; i < N ; i ++) {
 int sum = 0;
 for (int j = -1; j <= 1; j ++) {
 int pos = i + j;
 pos = pos < 0 ? 0 : pos;
 pos = pos > N - 1 ? N - 1 : pos;
 sum += A[pos]; }
 B[i] = sum ; }

3-point-stencil.c

B

A

What ARE Stencil Computations?

for (int i = 0; i < N ; i ++) {
 int sum = 0;
 for (int j = -1; j <= 1; j ++) {
 int pos = i + j;
 pos = pos < 0 ? 0 : pos;
 pos = pos > N - 1 ? N - 1 : pos;
 sum += A[pos]; }
 B[i] = sum ; }

3-point-stencil.c

What ARE Stencil Computations?

for (int i = 0; i < N ; i ++) {
 int sum = 0;
 for (int j = -1; j <= 1; j ++) {
 int pos = i + j;
 pos = pos < 0 ? 0 : pos;
 pos = pos > N - 1 ? N - 1 : pos;
 sum += A[pos]; }
 B[i] = sum ; }

3-point-stencil.c

Stencil computations in Lift
map()

reduce()

split(n)

join

zip

3-point-stencil.lift

Stencil computations in Lift
map()

reduce()

split(n)

join

zip

stencil

3-point-stencil.lift

Add specialized primitive: Job done?

Stencil computations in Lift
map()

reduce()

split(n)

join

zip

stencil

3-point-stencil.lift

Add specialized primitive: Job done?
No Reuse

Domain-specific

Multidimensional?

of existing primitives and optimizations

rather than generic

is it composable?

Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) {
 int sum = 0;
 for (int j = -1; j <= 1; j ++) {
 int pos = i + j;
 pos = pos < 0 ? 0 : pos;
 pos = pos > N - 1 ? N - 1 : pos;
 sum += A[pos]; }
 B[i] = sum ; }

3-point-stencil.c

Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) {
 int sum = 0;
 for (int j = -1; j <= 1; j ++) { // (a)
 int pos = i + j;
 pos = pos < 0 ? 0 : pos;
 pos = pos > N - 1 ? N - 1 : pos;
 sum += A[pos]; }
 B[i] = sum ; }

(a) access neighborhoods for every element

3-point-stencil.c

Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) {
 int sum = 0;
 for (int j = -1; j <= 1; j ++) { // (a)
 int pos = i + j;
 pos = pos < 0 ? 0 : pos; // (b)
 pos = pos > N - 1 ? N - 1 : pos;
 sum += A[pos]; }
 B[i] = sum ; }

(a) access neighborhoods for every element
(b) specify boundary handling

3-point-stencil.c

Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) {
 int sum = 0;
 for (int j = -1; j <= 1; j ++) { // (a)
 int pos = i + j;
 pos = pos < 0 ? 0 : pos; // (b)
 pos = pos > N - 1 ? N - 1 : pos;
 sum += A[pos]; } // (c)
 B[i] = sum ; }

(a) access neighborhoods for every element
(b) specify boundary handling
(c) apply stencil function to neighborhoods

3-point-stencil.c

Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) {
 int sum = 0;
 for (int j = -1; j <= 1; j ++) { // (a)
 int pos = i + j;
 pos = pos < 0 ? 0 : pos; // (b)
 pos = pos > N - 1 ? N - 1 : pos;
 sum += A[pos]; } // (c)
 B[i] = sum ; }

(a) access neighborhoods for every element
(b) specify boundary handling
(c) apply stencil function to neighborhoods

3-point-stencil.c

Stencil computations in Lift
map()

reduce()

split(n)

join

zip

???

???

???

3-point-stencil.lift

???

???

???

Stencil computations in Lift

???

???

???

map()

reduce()

split(n)

join

zip

3-point-stencil.lift

map

???

???
Reuse map

Simplicity

Multidimensional

allows to reuse
existing rewrite rules

one primitive per task

easily composable

Boundary Handling Using Pad
pad (reindexing) pad (constant)

clamp(i, n) = (i < 0) ? 0 :
 ((i >= n) ? n-1:i)

pad(1,1,clamp, [a,b,c,d]) =
 [a,a,b,c,d,d]

pad-reindexing.lift

constant(i, n) = C

pad(1,1,constant, [a,b,c,d]) =
 [C,a,b,c,d,C]

pad-constant.lift

C C

Neighborhood Creation using Slide
size

step

slide(3,1,[a,b,c,d,e]) =

[[a,b,c],[b,c,d],[c,d,e]]

slide-example.lift

...

Applying Stencil function using Map

map(nbh =>
 reduce(add, 0.0f, nbh))

sum-neighborhoods.lift

Putting it Together

def stencil1D =
 fun(A =>
 map(reduce(add, 0.0f),
 slide(3,1,
 pad(1,1,clamp,A))))

stencil1D.lift

slide(n,s)

pad(l,r,b) map

pad

slide

map()

reduce()

split(n)

join

zip

Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

map2(sumNbh, slide2(3,1, pad2(1,1,clamp,input)))

Decompose to Re-Compose

Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sumNbh, slide2(3,1, pad2(1,1,clamp,input)))

Multidimensional Boundary Handling using PAD

pad2 = map(pad(l,r,b,pad(l,r,b,input)))

input

2

pad2 = map(pad(l,r,b,pad(l,r,b,input)))

input

Multidimensional Boundary Handling using PAD 2

pad2 = map(pad(l,r,b,pad(l,r,b,input)))

input

Multidimensional Boundary Handling using PAD 2

Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sum, slide2(3,1, pad2(1,1,clamp,input)))

Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sum, slide2(3,1, pad2(1,1,clamp,input)))

Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sum, slide2(3,1, pad2(1,1,clamp,input)))

Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map3(sum, slide3(3,1, pad3(1,1,clamp,input)))

Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Compact LanguageAdvantages:

Decompose to Re-Compose

Reuse Rewrites Simple Compilation

map3(sum, slide3(3,1, pad3(1,1,clamp,input)))

Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)

Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)
join(map(map(f),
 split(n, A)))

Optimization: Overlapped Tiling

Exploit Locality

Shared Memory
Fast memory can be
used to cache tiles

Close neighborhoods
share elements that can
be grouped in tiles

Optimization: Overlapped Tiling

Shared memory size

Exploit Locality

Shared Memory
Fast memory can be
used to cache tiles

Close neighborhoods
share elements that can
be grouped in tiles

Optimization: Overlapped Tiling
overlap

Exploit Locality

Shared Memory
Fast memory can be
used to cache tiles

Close neighborhoods
share elements that can
be grouped in tiles

Optimization: Overlapped Tiling
overlap

Exploit Locality

Shared Memory
Fast memory can be
used to cache tiles

Close neighborhoods
share elements that can
be grouped in tiles

tile containing three
neighborhoods

overlapped tiling rule

Overlapped Tiling as a rewrite rule

map(f, slide(3,1,input))

u

v

overlapped tiling rule

Overlapped Tiling as a rewrite rule

map(f, slide(3,1,input))
join(map(tile ⇒
 map(f, slide(3,1,tile)),
 slide(u,v,input)))

u

v

overlapped tiling rule

Overlapped Tiling as a rewrite rule

map(f, slide(3,1,input))
join(map(tile ⇒
 map(f, slide(3,1,tile)),
 slide(u,v,input)))

u

v

Comparison with Hand-Optimized codes

Lift achieves the same performance
as hand optimized code

higher is better

Comparison with polyhedral compilation

Lift outperforms state-of-the-art
optimizing compilers

higher is better

2 Primitives

1 Rewrite Rule

pad, slide

overlapped tiling

We added:

Stencil Computations in LIft

High-Level IR

Lift is open Source!

lift-project.org

Bastian Hagedorn:

Paper CGO Artifact Source Code

more info at:

b.hagedorn@wwu.de

