
Optimization of neural computations using a 
functional data-parallel language

By Naums Mogers
Supervisor: Christophe Dubach

Or making neural networks performance-portable



Neural networks (NNs) depend on hardware-specific low-level optimizations.

Manual approach:

● Requires expertise in both machine learning and performance programming
● Costly to develop and maintain
● Hard to port to new platforms

Automated approaches:

● Caffe, Tensorflow, Theano, Torch have limited functional and performance portability
● Autotuners are not performance-portable because of no structural optimizations

Problem



● Lift, a functional data-parallel language
○ Abstracted from hardware, pure and safe

Lift code example:

fully_connected(f, weights, bias, inputs) := 
Map((neuron_weights, neuron_bias) → f() o Reduce(add, neuron_bias) o 

Map(mult) $ Zip(inputs, neuron_weights)) $ Zip(weights, bias)

Solution



● Lift, a functional data-parallel language
○ Abstracted from hardware, pure and safe

● Introduce NN-specific primitives such as conv, norm, pool, fully_connected
● Implement fine-grained generic optimizations such as:

○ Parallel mappings space exploration
○ Memory tiling & coalescing
○ Float quantization
○ Neuron pruning
○ Training batch size autotuning
○ Varying precision across layers
○ Vectorization

● Optimize based on NN configuration, input dimensions and target hardware
● Generate OpenCL code for any OpenCL-supporting target hardware

Solution



Questions?

The end


