
LIFT: A Functional Data-Parallel IR for  
High-Performance GPU Code Generation

Michel Steuwer · Toomas Remmelg · Christophe Dubach

C
on
sis
ten

t * C
omplete *

W
ell D

ocum
ented*Easyto

Re
us
e
* *

Evaluated

*
C
G
O
*

Ar
t ifact *

AEC

Lift: A Functional Data-Parallel IR for
High-Performance GPU Code Generation

Michel Steuwer Toomas Remmelg Christophe Dubach
University of Edinburgh, United Kingdom

{michel.steuwer, toomas.remmelg, christophe.dubach}@ed.ac.uk

Abstract
Parallel patterns (e.g., map, reduce) have gained traction as
an abstraction for targeting parallel accelerators and are a
promising answer to the performance portability problem.
However, compiling high-level programs into e�cient low-
level parallel code is challenging. Current approaches start
from a high-level parallel IR and proceed to emit GPU code
directly in one big step. Fixed strategies are used to optimize
and map parallelism exploiting properties of a particular GPU
generation leading to performance portability issues.

We introduce the Lift IR, a new data-parallel IR which en-
codes OpenCL-specific constructs as functional patterns. Our
prior work has shown that this functional nature simplifies
the exploration of optimizations and mapping of parallelism
from portable high-level programs using rewrite-rules.

This paper describes how Lift IR programs are compiled
into e�cient OpenCL code. This is non-trivial as many per-
formance sensitive details such as memory allocation, array
accesses or synchronization are not explicitly represented
in the Lift IR. We present techniques which overcome this
challenge by exploiting the pattern’s high-level semantics.
Our evaluation shows that the Lift IR is flexible enough to ex-
press GPU programs with complex optimizations achieving
performance on par with manually optimized code.

1. Introduction
GPUs (Graphics Processing Units) and other parallel acceler-
ators are now commonplace in computing systems. Their per-
formance is orders of magnitude higher than traditional CPUs
making them attractive for many application domains. How-
ever, achieving their full performance potential is extremely
hard, even for experienced programmers. This requires ultra-
specialized kernels written in low-level languages such as
OpenCL. This inevitably leads to code that is not performance
portable across di↵erent hardware.

High-level languages such as Lift [18], Accelerate [15],
Delite [19], StreamIt [20] or Halide [16] have been proposed
to ease programming of GPUs. These approaches are all
based on parallel patterns, a concept developed in the late
80’s [7]. Parallel patterns are deeply rooted in functional
programming concepts such as function composition and
nesting, and absence of side-e↵ects. When using parallel
patterns, programs are expressed without committing to a

particular implementation which is the key for achieving
performance portability across parallel architectures.

From the compiler point of view, the semantic informa-
tion associated with parallel patterns o↵ers a unique oppor-
tunity for optimization. These abstractions make it is easier
to reason about parallelism and apply optimizations with-
out the need for complex analysis. However, designing an
IR (Internal Representation) that preserves this semantic in-
formation throughout the compilation pipeline is di�cult.
Most existing approaches either lower the parallel primitives
into loop-based code, loosing high-level semantic informa-
tion, or directly produce GPU code using fixed optimization
strategies. This inevitably results in missed opportunities for
optimizations or performance portability issues.

In this paper, we advocate the use of a functional data-
parallel IR which expresses OpenCL-specific constructs. Our
functional IR is built on top of lambda-calculus and can
express a whole computational kernel as a series of nested and
composed function calls. It is equipped with a dependent type
system that reasons about array sizes and value ranges for
variables, preserving important semantic information from
the high-level patterns. The information available in the types
is used at multiple stages such as when performing array
allocation, index calculation, and even synchronization and
control flow simplification.

One downside of a functional IR is that all operations
are represented as functions which produce intermediate
results. This issue is addressed by fusing chains of composed
or nested functions which only a↵ect the data layout (e.g.,
zip or gather). This involves recording information about
the accessed data in a view structure which is then used to
emit the appropriate array access expression. These indexing
expressions are then simplified using a symbolic algebraic
simplifier that relies on type information (e.g., array length
and value ranges). This leads to the generation of highly
e�cient GPU code competitive with hand-tuned kernels.

To summarize, we make the following contributions:

• We present a new data-parallel functional IR that targets
the OpenCL programming model;
• We show how semantic information embedded in the IR

is used in various phases such as memory allocation, ar-
ray access generation and optimizations, synchronization
minimization and control-flow simplification;
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Wouldn’t it be great …
• if we could write parallel software once and achieve 

efficiency and high performance everywhere?  
 
 
 
 
 

• Instead, programs are optimized manually for every device.
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Problem:  
Existing imperative approaches are not performance portable!
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Example Matrix Multiplication
used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map
primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce
primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map
primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map
(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map( vectorize(f) ) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .
2 map(� bcol .
3 reduce(+, 0) � map(⇥) � zip(arow, bcol)
4 , transpose(B))
5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .
7 map(� bs .
8 reduce(+, 0) � map(⇥) � zip(as, bs)
9 , toLocal(copy2D(tileB)))

10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12 ) � tile(m, k, transpose(B))
13 ) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .
7 map(� bs .
8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12 ) � zip(transpose(aBlocks), bs)
13 , toLocal(copy2D(tileB)))
14 , split(l, toLocal(copy2D(tileA))))
15 ,0, zip(rowOfTilesA, colOfTilesB))
16 ) � tile(m, k, transpose(B))
17 ) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.
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used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map
primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce
primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map
primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map
(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map( vectorize(f) ) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .
2 map(� bcol .
3 reduce(+, 0) � map(⇥) � zip(arow, bcol)
4 , transpose(B))
5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .
7 map(� bs .
8 reduce(+, 0) � map(⇥) � zip(as, bs)
9 , toLocal(copy2D(tileB)))

10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12 ) � tile(m, k, transpose(B))
13 ) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .
7 map(� bs .
8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12 ) � zip(transpose(aBlocks), bs)
13 , toLocal(copy2D(tileB)))
14 , split(l, toLocal(copy2D(tileA))))
15 ,0, zip(rowOfTilesA, colOfTilesB))
16 ) � tile(m, k, transpose(B))
17 ) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.
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product remains unchanged (line 8) and is nested in two map
primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce
primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map
primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map
(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map( vectorize(f) ) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .
2 map(� bcol .
3 reduce(+, 0) � map(⇥) � zip(arow, bcol)
4 , transpose(B))
5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .
7 map(� bs .
8 reduce(+, 0) � map(⇥) � zip(as, bs)
9 , toLocal(copy2D(tileB)))

10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12 ) � tile(m, k, transpose(B))
13 ) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .
7 map(� bs .
8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12 ) � zip(transpose(aBlocks), bs)
13 , toLocal(copy2D(tileB)))
14 , split(l, toLocal(copy2D(tileA))))
15 ,0, zip(rowOfTilesA, colOfTilesB))
16 ) � tile(m, k, transpose(B))
17 ) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.
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Example Matrix Multiplication
do not deliver performance portability automatically. Naı̈ve
implementations of matrix multiplication deliver very poor
performance on GPUs; programmers are forced to manu-
ally apply advanced optimizations to achieve high perfor-
mance, as we will see in Section 2. These optimizations are
not portable across di↵erent GPUs, making manual optimiza-
tion costly and time-consuming.

To the best of our knowledge, we are the first to present a
fully automated compilation technique which generates high
performance GPU code for matrix multiplication for di↵erent
GPUs from a single portable source program. Our approach
achieves this by combining algorithmic and GPU specific op-
timizations to generate thousands of provably correct imple-
mentations. Using a pruning strategy, we generate and run
50,000 OpenCL kernels implementing matrix multiplication
on three GPUs from AMD and Nvidia. The best implemen-
tations found match or exceed the performance of several
high-performance GPU libraries on all platforms.
Our paper makes the following key contributions:
• An automated technique for generating high-performance

code from a single portable high-level representation of
matrix multiplication;
• Well-known optimizations for matrix multiplication are

expressed as provably correct and composable macro-rules;
• An exploration strategy based on heuristics for generating

50,000 di↵erently optimized OpenCL kernels;
• Experimental evidence that our approach matches the per-

formance of highly tuned CUDA and OpenCL implemen-
tations on di↵erent GPUs.

The remainder of the paper is structured as follows. Sec-
tion 2 provides a motivation. Section 3 gives an overview of
our functional data-parallel language and compiler interme-
diate representation, while section 4 introduces our rewrite
rules and how they are used to encode optimizations. Sec-
tion 5 explains our exploration and compilation strategy. Sec-
tions 6 and 7 show our experimental setup and results. Finally,
section 8 discusses related work and section 9 concludes.

2. Motivation
In this section we illustrate the shortcomings of existing GPU
compilers to produce high-performance code from easy to
write naı̈ve implementations using matrix multiplication as
an example. This results in a di�culty of writing high per-
forming OpenCL programs requiring in-depth knowledge of
various hardware characteristics.

The di�culty to achieve high performance motivates the
need for new compilation techniques capable of automat-
ically producing code close to manually optimized imple-
mentations from an easy to write high-level program.

Easy to Write Version Figure 1 shows the OpenCL kernel of
an easy to write naı̈ve matrix multiplication implementation
using a 2D thread space. The rows of matrix A and the
columns of matrix B are mapped to the first and second
dimension of the iteration space using the thread indices gid0
and gid1. The for-loop performs the dot-product of a row of
A and a column of B in line 6. The final statement stores the
result into matrix C.

While this version is easy to write, no existing compiler can
generate e�cient code from it, despite many years of fruitful
research on automatic compiler optimizations. Advanced op-
timizations like the usage of local memory, tiling, or register
blocking are not applied automatically by compilers.

1 kernel mm(global float* A, B, C, int N, K, M) {
2 int gid0 = global_id(0);
3 int gid1 = global_id(1);
4 float acc = 0.0f;
5 for (int i=0; i<K; i++)
6 acc += A[gid1*K+i]*B[i*M+gid0];
7 C[gid1*M+gid0] = acc;
8 }

Figure 1: Naı̈ve OpenCL kernel for matrix multiplication.

1 kernel mm_amd_opt(global float * A, B, C,
2 int K, M, N) {
3 local float tileA[512]; tileB[512];
4
5 private float acc_0; ...; acc_31;
6 private float blockOfB_0; ...; blockOfB_3;
7 private float blockOfA_0; ...; blockOfA_7;
8
9 int lid0 = local_id(0); lid1 = local_id(1);

10 int wid0 = group_id(0); wid1 = group_id(1);
11
12 for (int w1=wid1; w1<M/64; w1+=num_grps(1)) {
13 for (int w0=wid0; w0<N/64; w0+=num_grps(0)) {
14
15 acc_0 = 0.0f; ...; acc_31 = 0.0f;
16 for (int i=0; i<K/8; i++) {
17 vstore4(vload4(lid1*M/4+2*i*M+16*w1+lid0,A)
18 ,16*lid1+lid0, tileA);
19 vstore4(vload4(lid1*N/4+2*i*N+16*w0+lid0,B)
20 ,16*lid1+lid0, tileB);
21 barrier(...);
22
23 for (int j = 0; j<8; j++) {
24 blockOfA_0 = tileA[0+64*j+lid1*8];
25 ... 6 more statements
26 blockOfA_7 = tileA[7+64*j+lid1*8];
27 blockOfB_0 = tileB[0 +64*j+lid0];
28 ... 2 more statements
29 blockOfB_3 = tileB[48+64*j+lid0];
30
31 acc_0 += blockOfA_0 * blockOfB_0;
32 acc_1 += blockOfA_0 * blockOfB_1;
33 acc_2 += blockOfA_0 * blockOfB_2;
34 acc_3 += blockOfA_0 * blockOfB_3;
35 ... 24 more statements
36 acc_28 += blockOfA_7 * blockOfB_0;
37 acc_29 += blockOfA_7 * blockOfB_1;
38 acc_30 += blockOfA_7 * blockOfB_2;
39 acc_31 += blockOfA_7 * blockOfB_3;
40 }
41 barrier(...);
42
43 }
44
45 C[ 0+8*lid1*N+64*w0+64*w1*N+0*N+lid0]=acc_0;
46 C[16+8*lid1*N+64*w0+64*w1*N+0*N+lid0]=acc_1;
47 C[32+8*lid1*N+64*w0+64*w1*N+0*N+lid0]=acc_2;
48 C[48+8*lid1*N+64*w0+64*w1*N+0*N+lid0]=acc_3;
49 ... 24 more statements
50 C[ 0+8*lid1*N+64*w0+64*w1*N+7*N+lid0]=acc_28;
51 C[16+8*lid1*N+64*w0+64*w1*N+7*N+lid0]=acc_29;
52 C[32+8*lid1*N+64*w0+64*w1*N+7*N+lid0]=acc_30;
53 C[48+8*lid1*N+64*w0+64*w1*N+7*N+lid0]=acc_31;
54 } } }

Figure 2: Hand-optimized OpenCL kernel for fast matrix
multiplication on an AMD GPU.
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The rewrite rules are coupled with a set of low-level prim-
itives which resemble the OpenCL programming model (Ta-
ble 1). The rewrite rules bridge the gap between the high-
level algorithmic primitives and the low-level OpenCL spe-
cific primitives. Implementation choices are made by choos-
ing between di↵erent rewrite rules. For example, we might
decide to perform a map operation sequentially by rewrit-
ing it into the mapSeq primitive. Alternatively the high-level
map can be rewritten into a di↵erent low-level map to exploit
parallelism using global threads (mapGlb) or local threads
(mapLcl) grouped in work-groups (mapWrg). Once a high-
level program is rewritten into a low-level program, all de-
cisions about how the computation should be executed in
OpenCL have been made and explicitly encoded in the pro-
gram. We will explain the rewrite process and how it is
guided to achieve high performance in section 5.4.

4.3 OpenCL Code Generation
The last stage consists of generating OpenCL code from a

low-level program. No implementation or optimization deci-
sions are made at this point, as these have already been made
using rewrite rules. Every low-level primitive from Table 1
directly corresponds to a piece of OpenCL code. Therefore,
the code generation process is straightforward and consists
of traversing the low-level program and emitting the corre-
sponding OpenCL code fragment. The code generation pro-
cess relies on information about the length of arrays which are
stored in their types. This information is used for the alloca-
tion of memory as well as for emitting indices when accessing
data, as we will see in more detail in the next section.

5. OPTIMIZING MATRIX
MULTIPLICATION FOR MALI

This section discusses how to optimize matrix multiplica-
tion for Mali. It first investigates a hand-optimized OpenCL
kernel and how it is expressible in the functional language.
Then it shows that the functional representation is suitable
for expressing optimizations structurally as rewrite rules.

5.1 Manually Optimized OpenCL Kernel
ARM recently published a paper where they discuss op-

timization techniques for their Mali GPU [8]. One of the
applications investigated is the general matrix multiplication
for which multiple optimized OpenCL kernels are presented.
Listing 2 shows the best performing version developed by
ARM’s engineers [8]. To keep the discussion simple we show
a slightly simpler version, which concentrates on the actual
matrix multiplication and omits the scalar values ↵ and �
used in the BLAS formulation of GEMM.

OpenCL kernel analysis.
The OpenCL kernel shown in Listing 2 applies vectoriza-

tion and blocking as its two main optimizations. The for loop
in line 8 iterates over blocks (or tiles) comprising of 2 float4
elements from matrix A and B. These elements are loaded into
private variables in lines 9–12. The dot products of all four
combinations of float4 elements from matrix A and B are
computed using the OpenCL built-in dot function (lines 13
and 14) resulting in four separate intermediate results. These
are combined into a single float4 value (line 13) which is
added to the accumulation variable ab (declared in line 7).

The vectorization of the addition operation in line 13 is

1 kernel void mm(global float4* const A,
2 global float4* const B,
3 global float2* C, uint n) {
4 uint i = get_global_id(0);
5 uint j = get_global_id(1);
6 uint nv4 = n >> 2;
7 float4 ab = (float4)(0.0f);
8 for (uint k = 0; k < nv4; ++k) {
9 float4 a0 = A[ 2*i *nv4+k];

10 float4 a1 = A[(2*i+1)*nv4+k];
11 float4 b0 = B[ 2*j *nv4+k];
12 float4 b1 = B[(2*j+1)*nv4+k];
13 ab += (float4)(dot(a0, b0), dot(a0, b1),
14 dot(a1, b0), dot(a1, b1)); }
15 uint ix = 2*i*(n>>1) + j;
16 C[ix] = ab.s01;
17 C[ix + (n>>1)] = ab.s23; }

Listing 2: Optimized OpenCL matrix multiplication
kernel. This listing shows the blockedNT version from [8].

independent of the use of vector data types for the elements
of matrix A and B. Instead, the blocking of 2 values from A
and 2 values from B leads to 4 intermediate results which are
added to the accumulation variable using a vector addition.
After the loop, the results are written to global memory in
two instructions (lines 16 and 17) using a vector width of 2.

Optimized matrix multiplication expressed functionally.

Listing 3 shows a functional expression resembling the op-
timized implementation shown in Listing 2. Starting from
the top, the blocking optimization is expressed by splitting
matrices A (line 2) and B (line 3) by a factor of 2. This groups 2
rows of A and 2 columns of B together. The mapGlb primitives
used in lines 2 and 3 express the mapping of parallelism to
global threads in OpenCL: every global thread processes a
pair of 2 rows of A and 2 columns of B.

To complete the blocking of A, we first transpose a block of
2 rows of A (line 4), split each row into chunks of 4 elements
and then transpose back to obtain tiles with 2⇥4 floatvalues.
The same process is applied to B in lines 6 and 7. The zip
(line 4) combines the tiles of A and B together. These pairs
of tiles are then processed by the reduceSeq in line 8 which
corresponds to the for loop in the OpenCL kernel.

When processing a single pair of a tile of A and a tile of B
inside of the reduction, the pairs are copied into the private
memory in lines 10–13. The asVector(4) primitive (used in
lines 11 and 13) vectorizes the data by turning 4 individual
float values of a tile into a single float4 value. This section
corresponds to the lines 9–12 in Listing 2 where values from
matrices A and B are loaded into private variables.

For each combination of a row of a tile of A and a column of a
tile of B, each represented by a float4 value, we perform the
dot product computation in lines 17–19. The dot product is
expressed as a combination of the zip, mapSeq and reduceSeq
primitives. The zip (line 17) combines the two float4 values
from the tiles of A and B, before the mapSeq(mult4) (line 18)
performs the vectorized multiplication of the two values. To
finish the dot product computation, reduceSeq(0.0f, add)
(line 19) adds up the multiplied values after they have been
turned back into scalar values using the asScalar primitive
(line 18). This section corresponds to the four occurrences of
the dot function in lines 13 and 14 in Listing 2.

Low-Level Program

OpenCL Programs

used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map
primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce
primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map
primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map
(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map( vectorize(f) ) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .
2 map(� bcol .
3 reduce(+, 0) � map(⇥) � zip(arow, bcol)
4 , transpose(B))
5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .
7 map(� bs .
8 reduce(+, 0) � map(⇥) � zip(as, bs)
9 , toLocal(copy2D(tileB)))

10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12 ) � tile(m, k, transpose(B))
13 ) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .
7 map(� bs .
8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12 ) � zip(transpose(aBlocks), bs)
13 , toLocal(copy2D(tileB)))
14 , split(l, toLocal(copy2D(tileA))))
15 ,0, zip(rowOfTilesA, colOfTilesB))
16 ) � tile(m, k, transpose(B))
17 ) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.
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used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map
primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce
primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map
primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map
(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map( vectorize(f) ) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .
2 map(� bcol .
3 reduce(+, 0) � map(⇥) � zip(arow, bcol)
4 , transpose(B))
5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .
7 map(� bs .
8 reduce(+, 0) � map(⇥) � zip(as, bs)
9 , toLocal(copy2D(tileB)))

10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12 ) � tile(m, k, transpose(B))
13 ) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .
7 map(� bs .
8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12 ) � zip(transpose(aBlocks), bs)
13 , toLocal(copy2D(tileB)))
14 , split(l, toLocal(copy2D(tileA))))
15 ,0, zip(rowOfTilesA, colOfTilesB))
16 ) � tile(m, k, transpose(B))
17 ) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.
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Figure 5.3: Overview of our code generation approach. Problems expressed
with high-level algorithmic patterns are systematically trans-
formed into low-level OpenCL patterns using a rule rewriting
system. OpenCL code is generated by mapping the low-level pat-
terns directly to the OpenCL programming model representing
hardware paradigms.

We argue that the root of the problem lies in a gap in the system
stack between the high-level algorithmic patterns on the one hand
and low-level hardware optimizations on the other hand. We propose
to bridge this gap using a novel pattern-based code generation tech-
nique. A set of rewrite rules systematically translates high-level algo-
rithmic patterns into low-level hardware patterns. The rewrite rules
express different algorithmic and optimization choices. By systemati-
cally applying the rewrite rules semantically equivalent, low-level ex-
pressions are derived from high-level algorithm expressions written
by the application developer. Once derived, high-performance code
based on these expressions can be automatically generated. The next
section introduces an overview of our approach.

5.2 overview of our code generation approach
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In the following section we introduce the predefined pat-
terns used as building blocks to express programs. Besides
these patterns, the Lift IL also supports user functions writ-
ten in C operating on scalar values, which implement the
application specific computations.

Algorithmic Patterns The Lift IL supports four algorith-
mic patterns corresponding to sequential implementations of
the well known map and reduce patterns, the identity and
the iterate primitive. The iterate pattern applies a function
f m times by re-injecting the output of each iteration as the
input of the next. The length of the output array is inferred
as a function h of the number of iterations m, the input array
length n and the change of the array length by a single itera-
tion captured by the function g. We will discuss in section 5
how we automatically infer the length of the output array.

mapSeq( f , x1x2· · ·xn ) = f (x1) f (x2) · · · f (xn)

reduceSeq(z, f , x1x2· · ·xn ) = f (· · · ( f ( f (z, x1), x2) · · · ), xn)

id( x1x2· · ·xn ) = x1x2· · ·xn

iteratem( f , x1x2· · ·xn ) = f (· · · ( f (|   {z   }
m times

x1x2· · ·xn )))

Data Layout Patterns The Lift IL defines a set of patterns
that do not perform any computation but simply reorganize
the data layout. The first two patterns, split and join, add or
remove a dimension from the input array.

splitm( x1 x2 . . . . . . . . . . . . . . . . . . . . . xn )

= x1 x2 . . . . . .

m

. . . . . . . . . . . . . . . . . . . . . . . . xn

join( x1 x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xn )

= x1 x2 . . . . . . . . . . . . . . . . . . . . . xn

The gather and scatter patterns apply a permutation
function f which remaps indices when reading from or
writing to arrays respectively. Combined with split and join,
for instance, these primitives can express matrix transposition:
split

nrows� scatter(i! (i mod ncols) ⇥ nrows + i / ncols) � join

gather( f , x f (1) x f (2) · · · x f (n) ) = x1 x2 · · · xn

scatter( f , x1 x2 · · · xn ) = x f (1) x f (2) · · · x f (n)

The zip pattern is used to combine two arrays of elements
into a single array of pairs while the get primitive projects a
component of a tuple.

zip( x1 x2 . . . xn , y1 y2 . . . yn )

= (x1,y1) (x2,y2) . . . (xn,yn)

geti((x1, x2, . . . , xn)) = xi

Finally, slide applies a moving window to the input data
and is used to express stencil computations. For instance,
mapSeq(reduceSeq(0,+)) � slide(3,1,input) expresses a sim-
ple 3-point stencil. Multi-dimensional stencils are also ex-
pressible by composing several slide functions interleaved
with transpositions (not shown for space constraint).

slide(size, step, x1 x2 . . . . . . . . . . . . . . . . . . . . . xn )

= x1 x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xn

size

step . . .

Parallel Patterns OpenCL provides a hierarchical organi-
zation of parallelism where threads are grouped into work
groups of local threads or a flat organization where threads
are simply global. This hierarchy is represented with three
patterns, where a mapLcl must be nested inside of mapWrg:

mapGlb{0,1,2} mapWrg{0,1,2} mapLcl{0,1,2}

OpenCL supports up to three thread dimensions, represented
by the superscripts 0, 1, 2. The semantic of these patterns is
identical to mapSeq, except that f is applied in parallel.

Address Space Patterns OpenCL distinguishes between
global, local and private address spaces. The Lift IL o↵ers
three corresponding primitives which wrap a function and
influence the address space used to store the output:

toGlobal toLocal toPrivate

For example, a sequential copy of an array x into local mem-
ory is expressed as: toLocal(mapSeq(id))(x). This design de-
couples the decision of where to store data (i.e., the address
space) from the decision of how the data is produced (i.e.,
sequentially or in parallel).

Vectorize Pattern The Lift IL supports two primitives that
transforms data between scalar and vector types, and one
pattern which applies a function to a vector.

asVector( x1 x2 . . . xn ) = �����������!x1, x2, . . . , xn, xi is scalar

asScalar(�����������!x1, x2, . . . , xn) = x1 x2 . . . xn

mapVec( f ,�����������!x1, x2, . . . , xn) =
��������������������!
f (x1), f (x2), . . . , f (xn)

During code generation, the function f is transformed
into a vectorized form. This transformation is straightforward
for functions based on simple arithmetic operations since
OpenCL already defines vectorized forms for these operation.
In the other more complicated cases, the code generator
simply applies f to each scalar in the vector.
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that do not perform any computation but simply reorganize
the data layout. The first two patterns, split and join, add or
remove a dimension from the input array.

splitm( x1 x2 . . . . . . . . . . . . . . . . . . . . . xn )

= x1 x2 . . . . . .

m

. . . . . . . . . . . . . . . . . . . . . . . . xn

join( x1 x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xn )

= x1 x2 . . . . . . . . . . . . . . . . . . . . . xn

The gather and scatter patterns apply a permutation
function f which remaps indices when reading from or
writing to arrays respectively. Combined with split and join,
for instance, these primitives can express matrix transposition:
split

nrows� scatter(i! (i mod ncols) ⇥ nrows + i / ncols) � join

gather( f , x f (1) x f (2) · · · x f (n) ) = x1 x2 · · · xn

scatter( f , x1 x2 · · · xn ) = x f (1) x f (2) · · · x f (n)

The zip pattern is used to combine two arrays of elements
into a single array of pairs while the get primitive projects a
component of a tuple.

zip( x1 x2 . . . xn , y1 y2 . . . yn )

= (x1,y1) (x2,y2) . . . (xn,yn)

geti((x1, x2, . . . , xn)) = xi

Finally, slide applies a moving window to the input data
and is used to express stencil computations. For instance,
mapSeq(reduceSeq(0,+)) � slide(3,1,input) expresses a sim-
ple 3-point stencil. Multi-dimensional stencils are also ex-
pressible by composing several slide functions interleaved
with transpositions (not shown for space constraint).

slide(size, step, x1 x2 . . . . . . . . . . . . . . . . . . . . . xn )

= x1 x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xn

size

step . . .

Parallel Patterns OpenCL provides a hierarchical organi-
zation of parallelism where threads are grouped into work
groups of local threads or a flat organization where threads
are simply global. This hierarchy is represented with three
patterns, where a mapLcl must be nested inside of mapWrg:

mapGlb{0,1,2} mapWrg{0,1,2} mapLcl{0,1,2}

OpenCL supports up to three thread dimensions, represented
by the superscripts 0, 1, 2. The semantic of these patterns is
identical to mapSeq, except that f is applied in parallel.

Address Space Patterns OpenCL distinguishes between
global, local and private address spaces. The Lift IL o↵ers
three corresponding primitives which wrap a function and
influence the address space used to store the output:

toGlobal toLocal toPrivate

For example, a sequential copy of an array x into local mem-
ory is expressed as: toLocal(mapSeq(id))(x). This design de-
couples the decision of where to store data (i.e., the address
space) from the decision of how the data is produced (i.e.,
sequentially or in parallel).

Vectorize Pattern The Lift IL supports two primitives that
transforms data between scalar and vector types, and one
pattern which applies a function to a vector.

asVector( x1 x2 . . . xn ) = �����������!x1, x2, . . . , xn, xi is scalar

asScalar(�����������!x1, x2, . . . , xn) = x1 x2 . . . xn

mapVec( f ,�����������!x1, x2, . . . , xn) =
��������������������!
f (x1), f (x2), . . . , f (xn)

During code generation, the function f is transformed
into a vectorized form. This transformation is straightforward
for functions based on simple arithmetic operations since
OpenCL already defines vectorized forms for these operation.
In the other more complicated cases, the code generator
simply applies f to each scalar in the vector.
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In the following section we introduce the predefined pat-
terns used as building blocks to express programs. Besides
these patterns, the Lift IL also supports user functions writ-
ten in C operating on scalar values, which implement the
application specific computations.

Algorithmic Patterns The Lift IL supports four algorith-
mic patterns corresponding to sequential implementations of
the well known map and reduce patterns, the identity and
the iterate primitive. The iterate pattern applies a function
f m times by re-injecting the output of each iteration as the
input of the next. The length of the output array is inferred
as a function h of the number of iterations m, the input array
length n and the change of the array length by a single itera-
tion captured by the function g. We will discuss in section 5
how we automatically infer the length of the output array.
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m times
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that do not perform any computation but simply reorganize
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remove a dimension from the input array.
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into a single array of pairs while the get primitive projects a
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= (x1,y1) (x2,y2) . . . (xn,yn)

geti((x1, x2, . . . , xn)) = xi

Finally, slide applies a moving window to the input data
and is used to express stencil computations. For instance,
mapSeq(reduceSeq(0,+)) � slide(3,1,input) expresses a sim-
ple 3-point stencil. Multi-dimensional stencils are also ex-
pressible by composing several slide functions interleaved
with transpositions (not shown for space constraint).
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Parallel Patterns OpenCL provides a hierarchical organi-
zation of parallelism where threads are grouped into work
groups of local threads or a flat organization where threads
are simply global. This hierarchy is represented with three
patterns, where a mapLcl must be nested inside of mapWrg:

mapGlb{0,1,2} mapWrg{0,1,2} mapLcl{0,1,2}

OpenCL supports up to three thread dimensions, represented
by the superscripts 0, 1, 2. The semantic of these patterns is
identical to mapSeq, except that f is applied in parallel.

Address Space Patterns OpenCL distinguishes between
global, local and private address spaces. The Lift IL o↵ers
three corresponding primitives which wrap a function and
influence the address space used to store the output:

toGlobal toLocal toPrivate

For example, a sequential copy of an array x into local mem-
ory is expressed as: toLocal(mapSeq(id))(x). This design de-
couples the decision of where to store data (i.e., the address
space) from the decision of how the data is produced (i.e.,
sequentially or in parallel).

Vectorize Pattern The Lift IL supports two primitives that
transforms data between scalar and vector types, and one
pattern which applies a function to a vector.

asVector( x1 x2 . . . xn ) = �����������!x1, x2, . . . , xn, xi is scalar

asScalar(�����������!x1, x2, . . . , xn) = x1 x2 . . . xn

mapVec( f ,�����������!x1, x2, . . . , xn) =
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f (x1), f (x2), . . . , f (xn)

During code generation, the function f is transformed
into a vectorized form. This transformation is straightforward
for functions based on simple arithmetic operations since
OpenCL already defines vectorized forms for these operation.
In the other more complicated cases, the code generator
simply applies f to each scalar in the vector.
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In the following section we introduce the predefined pat-
terns used as building blocks to express programs. Besides
these patterns, the Lift IL also supports user functions writ-
ten in C operating on scalar values, which implement the
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Algorithmic Patterns The Lift IL supports four algorith-
mic patterns corresponding to sequential implementations of
the well known map and reduce patterns, the identity and
the iterate primitive. The iterate pattern applies a function
f m times by re-injecting the output of each iteration as the
input of the next. The length of the output array is inferred
as a function h of the number of iterations m, the input array
length n and the change of the array length by a single itera-
tion captured by the function g. We will discuss in section 5
how we automatically infer the length of the output array.
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Data Layout Patterns The Lift IL defines a set of patterns
that do not perform any computation but simply reorganize
the data layout. The first two patterns, split and join, add or
remove a dimension from the input array.
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The gather and scatter patterns apply a permutation
function f which remaps indices when reading from or
writing to arrays respectively. Combined with split and join,
for instance, these primitives can express matrix transposition:
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The zip pattern is used to combine two arrays of elements
into a single array of pairs while the get primitive projects a
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Finally, slide applies a moving window to the input data
and is used to express stencil computations. For instance,
mapSeq(reduceSeq(0,+)) � slide(3,1,input) expresses a sim-
ple 3-point stencil. Multi-dimensional stencils are also ex-
pressible by composing several slide functions interleaved
with transpositions (not shown for space constraint).
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= x1 x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xn
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Parallel Patterns OpenCL provides a hierarchical organi-
zation of parallelism where threads are grouped into work
groups of local threads or a flat organization where threads
are simply global. This hierarchy is represented with three
patterns, where a mapLcl must be nested inside of mapWrg:

mapGlb{0,1,2} mapWrg{0,1,2} mapLcl{0,1,2}

OpenCL supports up to three thread dimensions, represented
by the superscripts 0, 1, 2. The semantic of these patterns is
identical to mapSeq, except that f is applied in parallel.

Address Space Patterns OpenCL distinguishes between
global, local and private address spaces. The Lift IL o↵ers
three corresponding primitives which wrap a function and
influence the address space used to store the output:

toGlobal toLocal toPrivate

For example, a sequential copy of an array x into local mem-
ory is expressed as: toLocal(mapSeq(id))(x). This design de-
couples the decision of where to store data (i.e., the address
space) from the decision of how the data is produced (i.e.,
sequentially or in parallel).

Vectorize Pattern The Lift IL supports two primitives that
transforms data between scalar and vector types, and one
pattern which applies a function to a vector.

asVector( x1 x2 . . . xn ) = �����������!x1, x2, . . . , xn, xi is scalar

asScalar(�����������!x1, x2, . . . , xn) = x1 x2 . . . xn

mapVec( f ,�����������!x1, x2, . . . , xn) =
��������������������!
f (x1), f (x2), . . . , f (xn)

During code generation, the function f is transformed
into a vectorized form. This transformation is straightforward
for functions based on simple arithmetic operations since
OpenCL already defines vectorized forms for these operation.
In the other more complicated cases, the code generator
simply applies f to each scalar in the vector.
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Dot Product in the LIFT IL
partialDot(x: [float]N, y: [float]N) = {  

  join(mapWrg0(λ !-> t1 

    join(toGlobal(mapLcl0(mapSeq(id)))(split1( 

    iterate6(λ !-> t2 
      join(mapLcl0(toLocal(mapSeq(id)), 
              reduceSeq(add, 0, split2(t2)))), 

    join(mapLcl0(toLocal(mapSeq(id)),  
            reduceSeq(multAndSumUp, 0, split2(t1)))))))) 

  , split128(zip(x, y))))  

}
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λ x "-> 
 join( 
  mapLcl0( 
   toLocal(mapSeq(id)),  
   reduceSeq(multAndSumUp, 0, split2(x))))

1 partialDot(x: [float]N , y: [float]N) =

2 (join � mapWrg0(

3 join � toGlobal(mapLcl0(mapSeq(id))) � split1 �
4 iterate6( join �
5 mapLcl0( toLocal(mapSeq(id)) �
6 reduceSeq(add, 0) ) �
7 split2 ) �
8 join � mapLcl0( toLocal(mapSeq(id)) �
9 reduceSeq(multAndSumUp , 0) ) � split2

10 ) � split128)( zip(x, y) )

Listing 1. Lift IL implementation of partial dot product

3.3 Example: Dot Product in the Lift IL
Listing 1 shows one possible implementation of dot product
expressed in the Lift IL. The program is represented using a
functional style, therefore, the program is read from right to
left instead of the familiar left to right common in imperative
programming. Furthermore, to simplify the notation we use
the � symbol to denote sequential function composition, i.e.,
( f � g)(x) = f (g(x)).

In the program of Listing 1 the input arrays x and y are
combined using the zip pattern in line 10. The zipped array
is then split into chunks of size 128 (line 10). A work group
processes a single chunk using the mapWrg pattern (line 2)
before combining the computed chunks using the join pattern
(line 2). Inside of a work group we perform three steps to
process a chunk of 128 elements: 1) we split the chunk further
into pairs of two zipped elements, which we multiply and
add up before copying the computed result into local memory
(lines 8 and 9); 2) we iteratively reduce two elements at a time
in local memory (lines 5 and 7); 3) we copy the computed
result back into global memory (line 3).

Note that the code shown here corresponds to a single
OpenCL kernel which only computes a partial dot product.
We focus on this OpenCL kernel and omit a second kernel
which sums up all intermediate results, because the vast
majority of the runtime is spent in the first kernel.

3.4 Summary
In this section we have discussed the design of the Lift
functional data-parallel intermediate language. It is similar in
style to prior work [4, 14, 18] and is OpenCL specific. The
Lift IL expresses very precisely how programs are mapped
to the OpenCL programming model, as we have seen for the
dot product example. The following section describes how
this language is represented in our compiler. Section 5 will
then describe how e�cient OpenCL code is produced.

4. The Lift Intermediate Representation
This section introduces the Lift Intermediate Representation.
All programs expressible in the Lift intermediate language
can be represented by the Lift IR. One of the key features of
the Lift IR is that it preserves a functional representation of
the program all the way through.
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type: Type

as: AddressSpace

Literal
value: String

Param
FunCall
f: FunDecl
args: Expr*

FunDecl

Lambda
params: Param*
body: Expr

Pattern
UserFun
code: String
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MapLcl
f: Lambda

. . .
Join

Split
n: Int

Figure 2. Class diagram of the Lift IR.

4.1 Organization of Classes
Programs are represented as graphs where nodes are imple-
mented as objects. The use of a graph-based representation
avoids the problem of performing extensive renaming when
transforming functional programs [13]. The class diagram of
the Lift IR in Figure 2 shows two main classes: expressions
(Expr) and function declarations (FunDecl).

Expressions represent values and have a type associated
with. Expressions are either literals, parameters or function
calls. Literals represent compile time known constants such
as 3.4f, arrays or tuples. Parameters are used inside functions
and their values are the arguments of a function call. Finally,
function calls connect a function to be called (a FunDecl)
with its arguments (Exprs).

Function Declarations correspond to either a lambda, a
predefined pattern or a user function. Lambdas are anony-
mous function declarations with parameters and a body which
is evaluated when the lambda is called. A pattern is a built-in
function such as map or reduce. The UserFun corresponds to
user-defined functions expressed in a subset of the C language
operating on non-array data types.

4.2 Lift IR Example
Figure 3 shows the Lift IR of the dot-product program from
Listing 1. The plain arrows show how object reference each
other. The top left node labeled Lambda2 is the root node
of the graph taking two parameters and its body implements
dot-product as a sequence of function calls.

The dashed arrows visualizes the way the data flows
through the IR. The inputs x and y are first used as an input
to the zip function which is then fed into a call to split(128).
Then the the results of the split is fed into the mapWrg
function. The function which is applied to each chunk of 128
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with. Expressions are either literals, parameters or function
calls. Literals represent compile time known constants such
as 3.4f, arrays or tuples. Parameters are used inside functions
and their values are the arguments of a function call. Finally,
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Listing 1. The plain arrows show how object reference each
other. The top left node labeled Lambda2 is the root node
of the graph taking two parameters and its body implements
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λ x0 "-> 
 join(λ x6 "->  
  mapLcl0(λ x5 "-> 
   toLocal(λ x4 "-> mapSeq(λ x3 "-> id(x3), x4), x5), 
   reduceSeq(λ x1,x2 "-> multAndSumUp(x1,x2), 0, split2(x0))), x6)
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the � symbol to denote sequential function composition, i.e.,
( f � g)(x) = f (g(x)).

In the program of Listing 1 the input arrays x and y are
combined using the zip pattern in line 10. The zipped array
is then split into chunks of size 128 (line 10). A work group
processes a single chunk using the mapWrg pattern (line 2)
before combining the computed chunks using the join pattern
(line 2). Inside of a work group we perform three steps to
process a chunk of 128 elements: 1) we split the chunk further
into pairs of two zipped elements, which we multiply and
add up before copying the computed result into local memory
(lines 8 and 9); 2) we iteratively reduce two elements at a time
in local memory (lines 5 and 7); 3) we copy the computed
result back into global memory (line 3).

Note that the code shown here corresponds to a single
OpenCL kernel which only computes a partial dot product.
We focus on this OpenCL kernel and omit a second kernel
which sums up all intermediate results, because the vast
majority of the runtime is spent in the first kernel.

3.4 Summary
In this section we have discussed the design of the Lift
functional data-parallel intermediate language. It is similar in
style to prior work [4, 14, 18] and is OpenCL specific. The
Lift IL expresses very precisely how programs are mapped
to the OpenCL programming model, as we have seen for the
dot product example. The following section describes how
this language is represented in our compiler. Section 5 will
then describe how e�cient OpenCL code is produced.

4. The Lift Intermediate Representation
This section introduces the Lift Intermediate Representation.
All programs expressible in the Lift intermediate language
can be represented by the Lift IR. One of the key features of
the Lift IR is that it preserves a functional representation of
the program all the way through.

Expr
type: Type

as: AddressSpace

Literal
value: String

Param
FunCall
f: FunDecl
args: Expr*

FunDecl

Lambda
params: Param*
body: Expr

Pattern
UserFun
code: String

MapGlb
MapWrg

MapLcl
f: Lambda

. . .
Join

Split
n: Int

Figure 2. Class diagram of the Lift IR.
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mented as objects. The use of a graph-based representation
avoids the problem of performing extensive renaming when
transforming functional programs [13]. The class diagram of
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Expressions represent values and have a type associated
with. Expressions are either literals, parameters or function
calls. Literals represent compile time known constants such
as 3.4f, arrays or tuples. Parameters are used inside functions
and their values are the arguments of a function call. Finally,
function calls connect a function to be called (a FunDecl)
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Function Declarations correspond to either a lambda, a
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mous function declarations with parameters and a body which
is evaluated when the lambda is called. A pattern is a built-in
function such as map or reduce. The UserFun corresponds to
user-defined functions expressed in a subset of the C language
operating on non-array data types.

4.2 Lift IR Example
Figure 3 shows the Lift IR of the dot-product program from
Listing 1. The plain arrows show how object reference each
other. The top left node labeled Lambda2 is the root node
of the graph taking two parameters and its body implements
dot-product as a sequence of function calls.

The dashed arrows visualizes the way the data flows
through the IR. The inputs x and y are first used as an input
to the zip function which is then fed into a call to split(128).
Then the the results of the split is fed into the mapWrg
function. The function which is applied to each chunk of 128
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1 partialDot(x: [float]N , y: [float]N) =

2 (join � mapWrg0(

3 join � toGlobal(mapLcl0(mapSeq(id))) � split1 �
4 iterate6( join �
5 mapLcl0( toLocal(mapSeq(id)) �
6 reduceSeq(add, 0) ) �
7 split2 ) �
8 join � mapLcl0( toLocal(mapSeq(id)) �
9 reduceSeq(multAndSumUp , 0) ) � split2

10 ) � split128)( zip(x, y) )

Listing 1. Lift IL implementation of partial dot product

3.3 Example: Dot Product in the Lift IL
Listing 1 shows one possible implementation of dot product
expressed in the Lift IL. The program is represented using a
functional style, therefore, the program is read from right to
left instead of the familiar left to right common in imperative
programming. Furthermore, to simplify the notation we use
the � symbol to denote sequential function composition, i.e.,
( f � g)(x) = f (g(x)).

In the program of Listing 1 the input arrays x and y are
combined using the zip pattern in line 10. The zipped array
is then split into chunks of size 128 (line 10). A work group
processes a single chunk using the mapWrg pattern (line 2)
before combining the computed chunks using the join pattern
(line 2). Inside of a work group we perform three steps to
process a chunk of 128 elements: 1) we split the chunk further
into pairs of two zipped elements, which we multiply and
add up before copying the computed result into local memory
(lines 8 and 9); 2) we iteratively reduce two elements at a time
in local memory (lines 5 and 7); 3) we copy the computed
result back into global memory (line 3).

Note that the code shown here corresponds to a single
OpenCL kernel which only computes a partial dot product.
We focus on this OpenCL kernel and omit a second kernel
which sums up all intermediate results, because the vast
majority of the runtime is spent in the first kernel.

3.4 Summary
In this section we have discussed the design of the Lift
functional data-parallel intermediate language. It is similar in
style to prior work [4, 14, 18] and is OpenCL specific. The
Lift IL expresses very precisely how programs are mapped
to the OpenCL programming model, as we have seen for the
dot product example. The following section describes how
this language is represented in our compiler. Section 5 will
then describe how e�cient OpenCL code is produced.

4. The Lift Intermediate Representation
This section introduces the Lift Intermediate Representation.
All programs expressible in the Lift intermediate language
can be represented by the Lift IR. One of the key features of
the Lift IR is that it preserves a functional representation of
the program all the way through.
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Figure 2. Class diagram of the Lift IR.

4.1 Organization of Classes
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as 3.4f, arrays or tuples. Parameters are used inside functions
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function calls connect a function to be called (a FunDecl)
with its arguments (Exprs).
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user-defined functions expressed in a subset of the C language
operating on non-array data types.
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Listing 1. The plain arrows show how object reference each
other. The top left node labeled Lambda2 is the root node
of the graph taking two parameters and its body implements
dot-product as a sequence of function calls.

The dashed arrows visualizes the way the data flows
through the IR. The inputs x and y are first used as an input
to the zip function which is then fed into a call to split(128).
Then the the results of the split is fed into the mapWrg
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Figure 3. Lift IR for dot-product example

elements is represented as a lambda which processes the input
in three steps. First, the data is moved from global to local
memory by performing a partial reduction (labeled glbToLcl).
Then, the data flows to a function which iteratively reduces
the elements in local memory (iteration). Finally, the data is
moved back from local memory to global memory(lclToGlb),
exits the mapWrg and the last join is applied to return the
final result.

4.3 Lambda and Data Flow
Lambdas appear in several places in the IR graph and encode
the data flow explicitly. For example, focusing on the iteration
part of the graph, we see that a Lambda node is used below

Lift IR
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Array

Accesses
Barrier

Elimination
OpenCL Code

Generation

Figure 4. Overview of the Lift compilation stages.

the Iterate node. To understand what the lambda does, we
can look back at Listing 1, lines 4– 7 copied here:

iterate6( join � mapLcl0( . . . ) � split2 )

This notation is only syntactic sugar for:

iterate6( � p . join(mapLcl0(. . ., split2(p))) )

The lambda (�) makes the data flow explicit, i.e. the iterate
pattern passing its input via the parameter p first to split
which then passes it to mapLcl and join.

5. Compilation Flow
Figure 4 shows the stages involved in compiling the Lift IR
into e�cient OpenCL code. The compilation starts by ana-
lyzing type information which is key for high-performance
code generation. This information is used heavily in the sub-
sequent memory allocation and array accesses generation
passes. The barrier elimination stage minimizes the number
of synchronizations required for correct parallel code. Finally,
the OpenCL code generation performs a last final optimiza-
tions to simplify control flow.

5.1 Type System and Analysis
The Lift compiler implements a dependent type system which
keeps track of the length and shapes of nested arrays. Besides
array types, the type system supports scalar types (e.g.,
int, float), vector types, and tuple types. While vector types
correspond to OpenCL vector data types (e.g., int2, float4)
tuples are represented as structs. Array types can be nested
to represent multi-dimensional arrays. In addition, arrays
carry information about the length of each dimension in their
type. These length information are arithmetic expressions of
operations on natural numbers larger than zero and named
variables which are unknown at compiler time. For example,
given an array x of length n where the type of the elements is
float we write the type of x as [float]n. Applying the array x
to the split m pattern results in the type [[float]m]n/m.

The types of function bodies are automatically inferred
from the parameter types by traversing the graph following
the data flow, as indicated by the dotted arrows in Figure 3.

5.2 Memory Allocation
A straightforward memory allocator would allocate a new
output bu↵er for every single FunCall node. However, this
would be very ine�cient as data layout patterns, such as
split, only change the way memory is accessed but do not
modify the actual data. Memory allocation is, therefore,
only performed for functions actually modifying data. These
are FunCall nodes where the called function contains a
UserFun node, such as the UserFun(add) node in Figure 3.
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Figure 3. Lift IR for dot-product example

elements is represented as a lambda which processes the input
in three steps. First, the data is moved from global to local
memory by performing a partial reduction (labeled glbToLcl).
Then, the data flows to a function which iteratively reduces
the elements in local memory (iteration). Finally, the data is
moved back from local memory to global memory(lclToGlb),
exits the mapWrg and the last join is applied to return the
final result.

4.3 Lambda and Data Flow
Lambdas appear in several places in the IR graph and encode
the data flow explicitly. For example, focusing on the iteration
part of the graph, we see that a Lambda node is used below
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Figure 4. Overview of the Lift compilation stages.

the Iterate node. To understand what the lambda does, we
can look back at Listing 1, lines 4– 7 copied here:

iterate6( join � mapLcl0( . . . ) � split2 )

This notation is only syntactic sugar for:

iterate6( � p . join(mapLcl0(. . ., split2(p))) )

The lambda (�) makes the data flow explicit, i.e. the iterate
pattern passing its input via the parameter p first to split
which then passes it to mapLcl and join.

5. Compilation Flow
Figure 4 shows the stages involved in compiling the Lift IR
into e�cient OpenCL code. The compilation starts by ana-
lyzing type information which is key for high-performance
code generation. This information is used heavily in the sub-
sequent memory allocation and array accesses generation
passes. The barrier elimination stage minimizes the number
of synchronizations required for correct parallel code. Finally,
the OpenCL code generation performs a last final optimiza-
tions to simplify control flow.

5.1 Type System and Analysis
The Lift compiler implements a dependent type system which
keeps track of the length and shapes of nested arrays. Besides
array types, the type system supports scalar types (e.g.,
int, float), vector types, and tuple types. While vector types
correspond to OpenCL vector data types (e.g., int2, float4)
tuples are represented as structs. Array types can be nested
to represent multi-dimensional arrays. In addition, arrays
carry information about the length of each dimension in their
type. These length information are arithmetic expressions of
operations on natural numbers larger than zero and named
variables which are unknown at compiler time. For example,
given an array x of length n where the type of the elements is
float we write the type of x as [float]n. Applying the array x
to the split m pattern results in the type [[float]m]n/m.

The types of function bodies are automatically inferred
from the parameter types by traversing the graph following
the data flow, as indicated by the dotted arrows in Figure 3.

5.2 Memory Allocation
A straightforward memory allocator would allocate a new
output bu↵er for every single FunCall node. However, this
would be very ine�cient as data layout patterns, such as
split, only change the way memory is accessed but do not
modify the actual data. Memory allocation is, therefore,
only performed for functions actually modifying data. These
are FunCall nodes where the called function contains a
UserFun node, such as the UserFun(add) node in Figure 3.
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Figure 3. Lift IR for dot-product example

elements is represented as a lambda which processes the input
in three steps. First, the data is moved from global to local
memory by performing a partial reduction (labeled glbToLcl).
Then, the data flows to a function which iteratively reduces
the elements in local memory (iteration). Finally, the data is
moved back from local memory to global memory(lclToGlb),
exits the mapWrg and the last join is applied to return the
final result.

4.3 Lambda and Data Flow
Lambdas appear in several places in the IR graph and encode
the data flow explicitly. For example, focusing on the iteration
part of the graph, we see that a Lambda node is used below
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the Iterate node. To understand what the lambda does, we
can look back at Listing 1, lines 4– 7 copied here:

iterate6( join � mapLcl0( . . . ) � split2 )

This notation is only syntactic sugar for:

iterate6( � p . join(mapLcl0(. . ., split2(p))) )

The lambda (�) makes the data flow explicit, i.e. the iterate
pattern passing its input via the parameter p first to split
which then passes it to mapLcl and join.

5. Compilation Flow
Figure 4 shows the stages involved in compiling the Lift IR
into e�cient OpenCL code. The compilation starts by ana-
lyzing type information which is key for high-performance
code generation. This information is used heavily in the sub-
sequent memory allocation and array accesses generation
passes. The barrier elimination stage minimizes the number
of synchronizations required for correct parallel code. Finally,
the OpenCL code generation performs a last final optimiza-
tions to simplify control flow.

5.1 Type System and Analysis
The Lift compiler implements a dependent type system which
keeps track of the length and shapes of nested arrays. Besides
array types, the type system supports scalar types (e.g.,
int, float), vector types, and tuple types. While vector types
correspond to OpenCL vector data types (e.g., int2, float4)
tuples are represented as structs. Array types can be nested
to represent multi-dimensional arrays. In addition, arrays
carry information about the length of each dimension in their
type. These length information are arithmetic expressions of
operations on natural numbers larger than zero and named
variables which are unknown at compiler time. For example,
given an array x of length n where the type of the elements is
float we write the type of x as [float]n. Applying the array x
to the split m pattern results in the type [[float]m]n/m.

The types of function bodies are automatically inferred
from the parameter types by traversing the graph following
the data flow, as indicated by the dotted arrows in Figure 3.

5.2 Memory Allocation
A straightforward memory allocator would allocate a new
output bu↵er for every single FunCall node. However, this
would be very ine�cient as data layout patterns, such as
split, only change the way memory is accessed but do not
modify the actual data. Memory allocation is, therefore,
only performed for functions actually modifying data. These
are FunCall nodes where the called function contains a
UserFun node, such as the UserFun(add) node in Figure 3.
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Inference of datatypes including shapes and length of multi-dimensional arrays 

• Memory Allocation:  
Inference of address space and memory allocation for non data layout patterns 

• Array Accesses:  
Generation of explicit, flat OpenCL array accesses from LIFT patterns 
Simplification of generated array indices 

• Barrier Elimination: 
Identifying and removing of superfluous memory barriers 

• OpenCL Code Generation: 
Emitting matching OpenCL code for each pattern; 
Cheapest control flow is chosen based on type information 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… 
for (…) { 
  a = a + 
          x[(2 * l_id) + (128 * wg_id) + i]  
        * 
          y[(2 * l_id) + (128 * wg_id) + i]; 
} 
…

used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map
primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce
primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map
primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map
(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map( vectorize(f) ) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .
2 map(� bcol .
3 reduce(+, 0) � map(⇥) � zip(arow, bcol)
4 , transpose(B))
5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .
7 map(� bs .
8 reduce(+, 0) � map(⇥) � zip(as, bs)
9 , toLocal(copy2D(tileB)))

10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12 ) � tile(m, k, transpose(B))
13 ) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .
2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .
7 map(� bs .
8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12 ) � zip(transpose(aBlocks), bs)
13 , toLocal(copy2D(tileB)))
14 , split(l, toLocal(copy2D(tileA))))
15 ,0, zip(rowOfTilesA, colOfTilesB))
16 ) � tile(m, k, transpose(B))
17 ) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.
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mapWrg0( 
 λ z !->join(mapLcl0( 
   toLocal(mapSeq(id)),  
   reduceSeq(λ a,xy !-> a+(xy0*xy1) , 0, split2(z)))), 
 split128(zip(x, y)) )



View Construction

1 ((((wg_id⇥M+l_id)/M)+(((wg_id⇥M+l_id)mod M)⇥N))/N)⇥N+(((wg_id⇥M+l_id)/M)+(((wg_id⇥M+l_id)mod M)⇥N))mod N
2 (( wg_id + l_id ⇥N) /N)⇥N+( wg_id + l_id ⇥N) mod N
3 l_id ⇥N+ wg_id

Figure 6. Simplification process of automatically generated array indices.
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Figure 5. Views constructed for the generation of the first
memory access of dot product (on the left) and consumption
of views to generate an array index (on the right).

View Consumption Once the view structure is constructed,
all information required for generating accesses is available.
An array index expression is calculated by consuming this
information in the opposite order of construction, i.e., top-to-
bottom. This process is illustrated on the right hand side of
Figure 5 with the resulting array access at the bottom. The
constructed view is shown on left hand side. The Tuple Stack
on the right side contains information about tuple access
which determine which array is being accessed. The Array
Stack in the middle records information about which element
of the array is being accessed.

Starting from the top with two empty stacks, we process
the TupleAccessView(0) pushing the first component of a
tuple, i.e., 0, onto the tuple stack. Then an ArrayAccessView
pushes a new variable (i) on the stack indexing the array in
one dimension. Another ArrayAccessView pushes another
index variable (l_id) on the stack. The SplitView pops two
indices from the stack and combines them into a one di-
mensional index using the split factor, linearizing the array
access. The ZipView pops from the tuple stack and uses this
information to decide which view should be visited next: the
MemoryView(x). Finally, we reach a memory view which is
used to emit the final index to the memory of input x.

Simplifying Array Accesses If we follow the approach
described above we will obtain correct array indices, however,
this can lead to long and complex expressions. We illustrate
this issue using matrix transposition, expressed in Lift as:

1 matrixTranspose(x: [[float]M]N) =

2 (mapWrg0(mapLcl0(id)) �
3 splitN � gather(�(i)! i/M + (i mod M) ⇥ N) � join)(x)

Here the join, gather and split patterns flatten the two-
dimensional matrix, rearrange the indices with a stride before
splitting the array in two dimensions. When generating the
read accesses for the id function, following the methodology
introduced above, we obtain the array index shown in Figure 6
line 1. While this array index expression is correct it is also
quite long compared to the index a human could write for
performing a matrix transposition, shown in line 3.

However, a standard compiler would be unable to sim-
plify this expression since important information about value
ranges is missing. In contrast, the Lift compiler is able to
derive the simplified form using a symbolic simplification
mechanism exploiting domain knowledge. The simplification
process follows a set of algebraic rules exploiting properties
of arithmetic operators supported in the compiler (additions,
multiplications, integer divisions, fractions, powers and loga-
rithms). A small subset of the rules supported is shown below:

x/y = 0, if x < y and y , 0 (1)
(x ⇥ y + z)/y = x + z/y, if y , 0 (2)

x mod y = x, if x < y and y , 0 (3)
(x/y) ⇥ y + x mod y = x, if y , 0 (4)

(x ⇥ y) mod y = 0, if y , 0 (5)
(x + y) mod z = (x mod z + y mod z) mod z, if z , 0 (6)

The type system exploits domain specific knowledge by
inferring range information for every variable. For example,
the wg_id variable corresponding to the mapWrg, ranges from 0
to M, which is the row length of the input matrix. Similarly,
the l_id variable corresponding to the mapLcl, has values
between 0 and N since it indexes an array split in chunks of
N. The expression (wg_id ⇥ M + l_id) mod M can, therefore,
be simplified to l_id using rule 6 to distribute the modulo
followed by rules 3 and 5 to simplify the remaining modulo
operations. A traditional OpenCL compiler is not able to
simplify this code, as it is missing the information that wg_id
is positive and smaller than M. Lines 2 and 3 in Figure 6 show
the expression after a few simplification steps. This results in
the same compact array index a human would write.

In one case, disabling the simplification let to the genera-
tion of several MB of OpenCL code. By applying arithmetic
simplification we generate concise indices which reduce code
size and speed up execution as costly operations such as
modulo can often be simplified away. We will investigate the
performance benefits in section 7.
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Figure 5. Views constructed for the generation of the first
memory access of dot product (on the left) and consumption
of views to generate an array index (on the right).

View Consumption Once the view structure is constructed,
all information required for generating accesses is available.
An array index expression is calculated by consuming this
information in the opposite order of construction, i.e., top-to-
bottom. This process is illustrated on the right hand side of
Figure 5 with the resulting array access at the bottom. The
constructed view is shown on left hand side. The Tuple Stack
on the right side contains information about tuple access
which determine which array is being accessed. The Array
Stack in the middle records information about which element
of the array is being accessed.

Starting from the top with two empty stacks, we process
the TupleAccessView(0) pushing the first component of a
tuple, i.e., 0, onto the tuple stack. Then an ArrayAccessView
pushes a new variable (i) on the stack indexing the array in
one dimension. Another ArrayAccessView pushes another
index variable (l_id) on the stack. The SplitView pops two
indices from the stack and combines them into a one di-
mensional index using the split factor, linearizing the array
access. The ZipView pops from the tuple stack and uses this
information to decide which view should be visited next: the
MemoryView(x). Finally, we reach a memory view which is
used to emit the final index to the memory of input x.

Simplifying Array Accesses If we follow the approach
described above we will obtain correct array indices, however,
this can lead to long and complex expressions. We illustrate
this issue using matrix transposition, expressed in Lift as:

1 matrixTranspose(x: [[float]M]N) =

2 (mapWrg0(mapLcl0(id)) �
3 splitN � gather(�(i)! i/M + (i mod M) ⇥ N) � join)(x)

Here the join, gather and split patterns flatten the two-
dimensional matrix, rearrange the indices with a stride before
splitting the array in two dimensions. When generating the
read accesses for the id function, following the methodology
introduced above, we obtain the array index shown in Figure 6
line 1. While this array index expression is correct it is also
quite long compared to the index a human could write for
performing a matrix transposition, shown in line 3.

However, a standard compiler would be unable to sim-
plify this expression since important information about value
ranges is missing. In contrast, the Lift compiler is able to
derive the simplified form using a symbolic simplification
mechanism exploiting domain knowledge. The simplification
process follows a set of algebraic rules exploiting properties
of arithmetic operators supported in the compiler (additions,
multiplications, integer divisions, fractions, powers and loga-
rithms). A small subset of the rules supported is shown below:

x/y = 0, if x < y and y , 0 (1)
(x ⇥ y + z)/y = x + z/y, if y , 0 (2)

x mod y = x, if x < y and y , 0 (3)
(x/y) ⇥ y + x mod y = x, if y , 0 (4)

(x ⇥ y) mod y = 0, if y , 0 (5)
(x + y) mod z = (x mod z + y mod z) mod z, if z , 0 (6)

The type system exploits domain specific knowledge by
inferring range information for every variable. For example,
the wg_id variable corresponding to the mapWrg, ranges from 0
to M, which is the row length of the input matrix. Similarly,
the l_id variable corresponding to the mapLcl, has values
between 0 and N since it indexes an array split in chunks of
N. The expression (wg_id ⇥ M + l_id) mod M can, therefore,
be simplified to l_id using rule 6 to distribute the modulo
followed by rules 3 and 5 to simplify the remaining modulo
operations. A traditional OpenCL compiler is not able to
simplify this code, as it is missing the information that wg_id
is positive and smaller than M. Lines 2 and 3 in Figure 6 show
the expression after a few simplification steps. This results in
the same compact array index a human would write.

In one case, disabling the simplification let to the genera-
tion of several MB of OpenCL code. By applying arithmetic
simplification we generate concise indices which reduce code
size and speed up execution as costly operations such as
modulo can often be simplified away. We will investigate the
performance benefits in section 7.
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Figure 5. Views constructed for the generation of the first
memory access of dot product (on the left) and consumption
of views to generate an array index (on the right).

View Consumption Once the view structure is constructed,
all information required for generating accesses is available.
An array index expression is calculated by consuming this
information in the opposite order of construction, i.e., top-to-
bottom. This process is illustrated on the right hand side of
Figure 5 with the resulting array access at the bottom. The
constructed view is shown on left hand side. The Tuple Stack
on the right side contains information about tuple access
which determine which array is being accessed. The Array
Stack in the middle records information about which element
of the array is being accessed.

Starting from the top with two empty stacks, we process
the TupleAccessView(0) pushing the first component of a
tuple, i.e., 0, onto the tuple stack. Then an ArrayAccessView
pushes a new variable (i) on the stack indexing the array in
one dimension. Another ArrayAccessView pushes another
index variable (l_id) on the stack. The SplitView pops two
indices from the stack and combines them into a one di-
mensional index using the split factor, linearizing the array
access. The ZipView pops from the tuple stack and uses this
information to decide which view should be visited next: the
MemoryView(x). Finally, we reach a memory view which is
used to emit the final index to the memory of input x.

Simplifying Array Accesses If we follow the approach
described above we will obtain correct array indices, however,
this can lead to long and complex expressions. We illustrate
this issue using matrix transposition, expressed in Lift as:

1 matrixTranspose(x: [[float]M]N) =

2 (mapWrg0(mapLcl0(id)) �
3 splitN � gather(�(i)! i/M + (i mod M) ⇥ N) � join)(x)

Here the join, gather and split patterns flatten the two-
dimensional matrix, rearrange the indices with a stride before
splitting the array in two dimensions. When generating the
read accesses for the id function, following the methodology
introduced above, we obtain the array index shown in Figure 6
line 1. While this array index expression is correct it is also
quite long compared to the index a human could write for
performing a matrix transposition, shown in line 3.

However, a standard compiler would be unable to sim-
plify this expression since important information about value
ranges is missing. In contrast, the Lift compiler is able to
derive the simplified form using a symbolic simplification
mechanism exploiting domain knowledge. The simplification
process follows a set of algebraic rules exploiting properties
of arithmetic operators supported in the compiler (additions,
multiplications, integer divisions, fractions, powers and loga-
rithms). A small subset of the rules supported is shown below:

x/y = 0, if x < y and y , 0 (1)
(x ⇥ y + z)/y = x + z/y, if y , 0 (2)

x mod y = x, if x < y and y , 0 (3)
(x/y) ⇥ y + x mod y = x, if y , 0 (4)

(x ⇥ y) mod y = 0, if y , 0 (5)
(x + y) mod z = (x mod z + y mod z) mod z, if z , 0 (6)

The type system exploits domain specific knowledge by
inferring range information for every variable. For example,
the wg_id variable corresponding to the mapWrg, ranges from 0
to M, which is the row length of the input matrix. Similarly,
the l_id variable corresponding to the mapLcl, has values
between 0 and N since it indexes an array split in chunks of
N. The expression (wg_id ⇥ M + l_id) mod M can, therefore,
be simplified to l_id using rule 6 to distribute the modulo
followed by rules 3 and 5 to simplify the remaining modulo
operations. A traditional OpenCL compiler is not able to
simplify this code, as it is missing the information that wg_id
is positive and smaller than M. Lines 2 and 3 in Figure 6 show
the expression after a few simplification steps. This results in
the same compact array index a human would write.

In one case, disabling the simplification let to the genera-
tion of several MB of OpenCL code. By applying arithmetic
simplification we generate concise indices which reduce code
size and speed up execution as costly operations such as
modulo can often be simplified away. We will investigate the
performance benefits in section 7.
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Figure 5. Views constructed for the generation of the first
memory access of dot product (on the left) and consumption
of views to generate an array index (on the right).

View Consumption Once the view structure is constructed,
all information required for generating accesses is available.
An array index expression is calculated by consuming this
information in the opposite order of construction, i.e., top-to-
bottom. This process is illustrated on the right hand side of
Figure 5 with the resulting array access at the bottom. The
constructed view is shown on left hand side. The Tuple Stack
on the right side contains information about tuple access
which determine which array is being accessed. The Array
Stack in the middle records information about which element
of the array is being accessed.

Starting from the top with two empty stacks, we process
the TupleAccessView(0) pushing the first component of a
tuple, i.e., 0, onto the tuple stack. Then an ArrayAccessView
pushes a new variable (i) on the stack indexing the array in
one dimension. Another ArrayAccessView pushes another
index variable (l_id) on the stack. The SplitView pops two
indices from the stack and combines them into a one di-
mensional index using the split factor, linearizing the array
access. The ZipView pops from the tuple stack and uses this
information to decide which view should be visited next: the
MemoryView(x). Finally, we reach a memory view which is
used to emit the final index to the memory of input x.

Simplifying Array Accesses If we follow the approach
described above we will obtain correct array indices, however,
this can lead to long and complex expressions. We illustrate
this issue using matrix transposition, expressed in Lift as:

1 matrixTranspose(x: [[float]M]N) =

2 (mapWrg0(mapLcl0(id)) �
3 splitN � gather(�(i)! i/M + (i mod M) ⇥ N) � join)(x)

Here the join, gather and split patterns flatten the two-
dimensional matrix, rearrange the indices with a stride before
splitting the array in two dimensions. When generating the
read accesses for the id function, following the methodology
introduced above, we obtain the array index shown in Figure 6
line 1. While this array index expression is correct it is also
quite long compared to the index a human could write for
performing a matrix transposition, shown in line 3.

However, a standard compiler would be unable to sim-
plify this expression since important information about value
ranges is missing. In contrast, the Lift compiler is able to
derive the simplified form using a symbolic simplification
mechanism exploiting domain knowledge. The simplification
process follows a set of algebraic rules exploiting properties
of arithmetic operators supported in the compiler (additions,
multiplications, integer divisions, fractions, powers and loga-
rithms). A small subset of the rules supported is shown below:

x/y = 0, if x < y and y , 0 (1)
(x ⇥ y + z)/y = x + z/y, if y , 0 (2)

x mod y = x, if x < y and y , 0 (3)
(x/y) ⇥ y + x mod y = x, if y , 0 (4)

(x ⇥ y) mod y = 0, if y , 0 (5)
(x + y) mod z = (x mod z + y mod z) mod z, if z , 0 (6)

The type system exploits domain specific knowledge by
inferring range information for every variable. For example,
the wg_id variable corresponding to the mapWrg, ranges from 0
to M, which is the row length of the input matrix. Similarly,
the l_id variable corresponding to the mapLcl, has values
between 0 and N since it indexes an array split in chunks of
N. The expression (wg_id ⇥ M + l_id) mod M can, therefore,
be simplified to l_id using rule 6 to distribute the modulo
followed by rules 3 and 5 to simplify the remaining modulo
operations. A traditional OpenCL compiler is not able to
simplify this code, as it is missing the information that wg_id
is positive and smaller than M. Lines 2 and 3 in Figure 6 show
the expression after a few simplification steps. This results in
the same compact array index a human would write.

In one case, disabling the simplification let to the genera-
tion of several MB of OpenCL code. By applying arithmetic
simplification we generate concise indices which reduce code
size and speed up execution as costly operations such as
modulo can often be simplified away. We will investigate the
performance benefits in section 7.
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Compilation Flow of Dot Product

5.4 Barrier Elimination
When di↵erent threads access the same memory location
they must synchronize to ensure memory consistency. When
compiling the Lift IR, this corresponds to generating an ap-
propriate synchronization primitive after each occurrence of
a parallel map pattern. A return is emitted after the mapGlb
and mapWrg patterns, since OpenCL does not support syn-
chronization across work groups. For mapLcl a barrier is
emitted synchronizing all threads in the work group.

Sometimes these barriers are not required, for example,
when there is no sharing because all threads continue oper-
ating on the same memory locations. We take an approach
of safety first, were a barrier is emitted by default and is
only removed if we can infer from the context that it is not
required. The key insight for this barrier elimination process
is the fact that the Lift IL only allows sharing of data by
using the split, join, gather or scatter patterns. Therefore, we
look for sequences of mapLcl calls which have no split, join,
gather, or scatter between them and mark them specially.
These marked mapLcl function calls will not emit a barrier
in the OpenCL code generation stage. We also eliminate one
barrier when two mapLcl appear inside of a zip since the two
branches of a zip can be executed completely independently.

5.5 OpenCL Code Generation
The final stage in the Lift compilation pipeline is the OpenCL
code generation where low-level optimizations are performed
to precisely control the generated code. To generate the
OpenCL code, the Lift IR graph is traversed following the
data flow and a matching OpenCL code snippets is generated
for every pattern. The generated kernel for the dot product
example is shown in Figure 7 with only minor cosmetic
changes made by hand for presentation purpose (renamed
variables, removed comments, removed extra parenthesis).

No OpenCL code is generated for patterns such as split and
toLocal since their e↵ect have been recorded in the views. For
the di↵erent map patterns, for loops are generated, which for
the parallel variations will be executed in parallel by multiple
work groups or threads, such as the loop in in line 7. For
the reduceSeq pattern, a loop with an accumulation variable
(e.g., in line 10) is generated calling its function in every
iteration. The code generated for iterate spans lines 17 to 29
with double bu↵ering initializing two pointers in line 18 and
swapping the pointers after each iteration in lines 27 and 28.

Control Flow Simplification The Lift compiler performs
control flow simplification using the extra semantic infor-
mation available in patterns and types. A straightforward
implementation would emit a for loop for every map, reduce
and iterate pattern. Fortunately, the Lift compiler often stati-
cally infers if the number of threads for a map is larger, equal
or lower than the number of elements to process. This is the
case in lines 20 and 30 which correspond to the mapLcl in
line 5 and 3 in the original Listing 1. This is possible be-
cause get_local_id(0) returns a positive number. If we infer

1 kernel void KERNEL(const global float *restrict x,
2 const global float *restrict y,
3 global float *z, int N) {
4 local float tmp1[64]; local float tmp2[64];
5 local float tmp3[32];
6 float acc1; float acc2;
7 for (int wg_id = get_group_id(0); wg_id < N/128;
8 wg_id += get_num_groups(0)) {
9 { int l_id = get_local_id(0);

10 acc1 = 0.0f;
11 for (int i = 0; i < 2; i += 1) {
12 acc1 = multAndSumUp(acc1,
13 x[2 * l_id + 128 * wg_id + i],
14 y[2 * l_id + 128 * wg_id + i]); }
15 tmp1[l_id] = id(acc1); }
16 barrier(CLK_LOCAL_MEM_FENCE);
17 int size = 64;
18 local float *in = tmp1; local float *out = tmp2;
19 for (int iter = 0; iter < 6; iter += 1) {
20 if (get_local_id(0) < size / 2) {
21 acc2 = 0.0f;
22 for (int i = 0; i < 2; i += 1) {
23 acc2 = add(acc2, in[2 * l_id + i]); }
24 out[l_id] = id(acc2); }
25 barrier(CLK_LOCAL_MEM_FENCE);
26 size = size / 2;
27 in = (out == tmp1) ? tmp1 : tmp3;
28 out = (out == tmp1) ? tmp3 : tmp1;
29 barrier(CLK_LOCAL_MEM_FENCE); }
30 if (get_local_id(0) < 1) {
31 z[wg_id] = id(tmp3[l_id]); }
32 barrier(CLK_GLOBAL_MEM_FENCE); } }

Figure 7. Compiler-generated OpenCL kernel for the dot
product example shown in Listing 1

that the loop executes exactly once by every thread we elimi-
nate the loop completely, which is the case in line 9 which
corresponds to the mapLcl in line 8 in Listing 1.

Performing control flow simplification is beneficial in
two ways: first, execution time is improved as additional
instructions from the loop are avoided; and, secondly, in
general fewer registers are required when loops are avoided.

5.6 Summary
In this section we have seen how Lift IR is compiled to
OpenCL. We used the dot product computation from Listing 1
as a running example to discuss how types are inferred,
memory is allocated, concise array accesses are generated,
barriers are eliminated, and, finally, the OpenCL kernel with
simplified control flow shown in Figure 7 is generated. The
next section investigates the overall performance as well as
the impact of the optimizations discussed in this section.

6. Experimental Setup
Two GPUs are used for the evaluation: an AMD Radeon R9
295X2 with AMD APP SDK 2.9.214.1 and driver 1598.5,
as well as an Nvidia GTX Titan Black with CUDA 8.0.0
and driver 367.35. All experiments are performed using
single precision floats. We report the median runtime of
10 executions for each kernel measured using the OpenCL
profiling API. We focus on the quality of the kernel code and,
therefore, ignore data transfer times. For benchmarks with
multiple kernels, we sum up the kernel runtimes.
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used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map
primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce
primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map
primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map
(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map( vectorize(f) ) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .
2 map(� bcol .
3 reduce(+, 0) � map(⇥) � zip(arow, bcol)
4 , transpose(B))
5 , A)
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5 map(map(+)) � zip(tileAcc) �
6 map(� as .
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Figure 3. Lift IR for dot-product example

elements is represented as a lambda which processes the input
in three steps. First, the data is moved from global to local
memory by performing a partial reduction (labeled glbToLcl).
Then, the data flows to a function which iteratively reduces
the elements in local memory (iteration). Finally, the data is
moved back from local memory to global memory(lclToGlb),
exits the mapWrg and the last join is applied to return the
final result.

4.3 Lambda and Data Flow
Lambdas appear in several places in the IR graph and encode
the data flow explicitly. For example, focusing on the iteration
part of the graph, we see that a Lambda node is used below
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Figure 4. Overview of the Lift compilation stages.

the Iterate node. To understand what the lambda does, we
can look back at Listing 1, lines 4– 7 copied here:

iterate6( join � mapLcl0( . . . ) � split2 )

This notation is only syntactic sugar for:

iterate6( � p . join(mapLcl0(. . ., split2(p))) )

The lambda (�) makes the data flow explicit, i.e. the iterate
pattern passing its input via the parameter p first to split
which then passes it to mapLcl and join.

5. Compilation Flow
Figure 4 shows the stages involved in compiling the Lift IR
into e�cient OpenCL code. The compilation starts by ana-
lyzing type information which is key for high-performance
code generation. This information is used heavily in the sub-
sequent memory allocation and array accesses generation
passes. The barrier elimination stage minimizes the number
of synchronizations required for correct parallel code. Finally,
the OpenCL code generation performs a last final optimiza-
tions to simplify control flow.

5.1 Type System and Analysis
The Lift compiler implements a dependent type system which
keeps track of the length and shapes of nested arrays. Besides
array types, the type system supports scalar types (e.g.,
int, float), vector types, and tuple types. While vector types
correspond to OpenCL vector data types (e.g., int2, float4)
tuples are represented as structs. Array types can be nested
to represent multi-dimensional arrays. In addition, arrays
carry information about the length of each dimension in their
type. These length information are arithmetic expressions of
operations on natural numbers larger than zero and named
variables which are unknown at compiler time. For example,
given an array x of length n where the type of the elements is
float we write the type of x as [float]n. Applying the array x
to the split m pattern results in the type [[float]m]n/m.

The types of function bodies are automatically inferred
from the parameter types by traversing the graph following
the data flow, as indicated by the dotted arrows in Figure 3.

5.2 Memory Allocation
A straightforward memory allocator would allocate a new
output bu↵er for every single FunCall node. However, this
would be very ine�cient as data layout patterns, such as
split, only change the way memory is accessed but do not
modify the actual data. Memory allocation is, therefore,
only performed for functions actually modifying data. These
are FunCall nodes where the called function contains a
UserFun node, such as the UserFun(add) node in Figure 3.
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elements is represented as a lambda which processes the input
in three steps. First, the data is moved from global to local
memory by performing a partial reduction (labeled glbToLcl).
Then, the data flows to a function which iteratively reduces
the elements in local memory (iteration). Finally, the data is
moved back from local memory to global memory(lclToGlb),
exits the mapWrg and the last join is applied to return the
final result.

4.3 Lambda and Data Flow
Lambdas appear in several places in the IR graph and encode
the data flow explicitly. For example, focusing on the iteration
part of the graph, we see that a Lambda node is used below
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the Iterate node. To understand what the lambda does, we
can look back at Listing 1, lines 4– 7 copied here:

iterate6( join � mapLcl0( . . . ) � split2 )

This notation is only syntactic sugar for:

iterate6( � p . join(mapLcl0(. . ., split2(p))) )

The lambda (�) makes the data flow explicit, i.e. the iterate
pattern passing its input via the parameter p first to split
which then passes it to mapLcl and join.

5. Compilation Flow
Figure 4 shows the stages involved in compiling the Lift IR
into e�cient OpenCL code. The compilation starts by ana-
lyzing type information which is key for high-performance
code generation. This information is used heavily in the sub-
sequent memory allocation and array accesses generation
passes. The barrier elimination stage minimizes the number
of synchronizations required for correct parallel code. Finally,
the OpenCL code generation performs a last final optimiza-
tions to simplify control flow.

5.1 Type System and Analysis
The Lift compiler implements a dependent type system which
keeps track of the length and shapes of nested arrays. Besides
array types, the type system supports scalar types (e.g.,
int, float), vector types, and tuple types. While vector types
correspond to OpenCL vector data types (e.g., int2, float4)
tuples are represented as structs. Array types can be nested
to represent multi-dimensional arrays. In addition, arrays
carry information about the length of each dimension in their
type. These length information are arithmetic expressions of
operations on natural numbers larger than zero and named
variables which are unknown at compiler time. For example,
given an array x of length n where the type of the elements is
float we write the type of x as [float]n. Applying the array x
to the split m pattern results in the type [[float]m]n/m.

The types of function bodies are automatically inferred
from the parameter types by traversing the graph following
the data flow, as indicated by the dotted arrows in Figure 3.

5.2 Memory Allocation
A straightforward memory allocator would allocate a new
output bu↵er for every single FunCall node. However, this
would be very ine�cient as data layout patterns, such as
split, only change the way memory is accessed but do not
modify the actual data. Memory allocation is, therefore,
only performed for functions actually modifying data. These
are FunCall nodes where the called function contains a
UserFun node, such as the UserFun(add) node in Figure 3.
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Figure 8. Speedup of generated code compared to OpenCL reference implementations.

7.3 Performance Evaluation
Figure 8 shows the relative performance of the Lift generated
code compared to the manually written OpenCL code on two
GPUs. For each benchmark, we compare the performance
of the hand-written OpenCL implementation with the perfor-
mance of the generated kernel from the corresponding Lift
IR program. The di↵erent bars represent the performance
obtained with di↵erent optimizations enabled and will be
explain in the next section.

Concentrating on the right-most, dark red bar in each sub-
plot, we notice that the code generator is able to achieve
performance on-par with hand-written OpenCL kernels in
most cases. This clearly demonstrates that the functional Lift
IR is able to express all the low-level details necessary to
produce very e�cient OpenCL code. The generated code is
on average within 5% of the hand-written OpenCL implemen-
tation, which is quite a feat, considering how sensitive the
underlying OpenCL compilers are. As anecdotal evidence,
simply swapping statements around in our generated code for
matrix multiplication can result in a performance di↵erence
of 3% on Nvidia for instance.

7.4 Evaluation of Optimization Impact
Figure 8 also shows the impact of each code generator op-
timization discussed in section 5. As can be seen, applying
none of the optimizations discussed in this paper, leads to an
average performance of only half the baseline. In extreme
cases, such as matrix multiplication and convolution, the gen-
erated code can be as much as 10x or even 20x slower than
the baseline. For convolution for instance, this is due to the
complexity of the memory accesses expressions resulting
from using the slide primitive. However, as can be seen on
the figure, the e↵ect of array access simplification on perfor-
mance is very impressive, demonstrating the importance of
this optimization. In addition, disabling array access simpli-
fication generally leads to larger kernel code, up to 7MB of
source code in the case of matrix multiplication.

Surprisingly, the barrier elimination and control-flow sim-
plification seems to have little e↵ect on performance on both
machines. The largest impact is for the AMD version of N-
Body where the simplification of control plays an important
role since this AMD implementation does not use local mem-
ory. The control simplification is able to produce a kernel
with a single loop (the reduction) which corresponds to the
human-written implementation. On the other hand, without
the simplification of control-flow enabled, three loops are
produced which results in a 20% slowdown.

7.5 Summary
The experimental evaluation has shown that the optimizations
presented in this paper have a significant impact on the per-
formance of more complex applications with a performance
improvement of over 20 times. This results in generated code
matching the performance of manually tuned OpenCL code.

8. Conclusion
This paper has presented Lift, a functional data-parallel in-
termediate representation for OpenCL. The Lift IR abstracts
away many of the OpenCL concepts and optimizations pat-
terns typically found in hand-written code. The functional
nature of Lift makes it an ideal target for existing high-level
approaches based on parallel patterns.

By design, Lift preserves high-level semantic information
which can be exploited by the Lift compiler to generate
e�cient OpenCL code. However, as seen in this paper,
generating e�cient code is far from trivial and requires the
careful application of optimizations such as array access
simplification. Our evaluation shows that these optimizations
are crucial to achieve high performance and produce code on
par with hand-tuned kernels.
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Abstract
Parallel patterns (e.g., map, reduce) have gained traction as
an abstraction for targeting parallel accelerators and are a
promising answer to the performance portability problem.
However, compiling high-level programs into e�cient low-
level parallel code is challenging. Current approaches start
from a high-level parallel IR and proceed to emit GPU code
directly in one big step. Fixed strategies are used to optimize
and map parallelism exploiting properties of a particular GPU
generation leading to performance portability issues.

We introduce the Lift IR, a new data-parallel IR which en-
codes OpenCL-specific constructs as functional patterns. Our
prior work has shown that this functional nature simplifies
the exploration of optimizations and mapping of parallelism
from portable high-level programs using rewrite-rules.

This paper describes how Lift IR programs are compiled
into e�cient OpenCL code. This is non-trivial as many per-
formance sensitive details such as memory allocation, array
accesses or synchronization are not explicitly represented
in the Lift IR. We present techniques which overcome this
challenge by exploiting the pattern’s high-level semantics.
Our evaluation shows that the Lift IR is flexible enough to ex-
press GPU programs with complex optimizations achieving
performance on par with manually optimized code.

1. Introduction
GPUs (Graphics Processing Units) and other parallel acceler-
ators are now commonplace in computing systems. Their per-
formance is orders of magnitude higher than traditional CPUs
making them attractive for many application domains. How-
ever, achieving their full performance potential is extremely
hard, even for experienced programmers. This requires ultra-
specialized kernels written in low-level languages such as
OpenCL. This inevitably leads to code that is not performance
portable across di↵erent hardware.

High-level languages such as Lift [18], Accelerate [15],
Delite [19], StreamIt [20] or Halide [16] have been proposed
to ease programming of GPUs. These approaches are all
based on parallel patterns, a concept developed in the late
80’s [7]. Parallel patterns are deeply rooted in functional
programming concepts such as function composition and
nesting, and absence of side-e↵ects. When using parallel
patterns, programs are expressed without committing to a

particular implementation which is the key for achieving
performance portability across parallel architectures.

From the compiler point of view, the semantic informa-
tion associated with parallel patterns o↵ers a unique oppor-
tunity for optimization. These abstractions make it is easier
to reason about parallelism and apply optimizations with-
out the need for complex analysis. However, designing an
IR (Internal Representation) that preserves this semantic in-
formation throughout the compilation pipeline is di�cult.
Most existing approaches either lower the parallel primitives
into loop-based code, loosing high-level semantic informa-
tion, or directly produce GPU code using fixed optimization
strategies. This inevitably results in missed opportunities for
optimizations or performance portability issues.

In this paper, we advocate the use of a functional data-
parallel IR which expresses OpenCL-specific constructs. Our
functional IR is built on top of lambda-calculus and can
express a whole computational kernel as a series of nested and
composed function calls. It is equipped with a dependent type
system that reasons about array sizes and value ranges for
variables, preserving important semantic information from
the high-level patterns. The information available in the types
is used at multiple stages such as when performing array
allocation, index calculation, and even synchronization and
control flow simplification.

One downside of a functional IR is that all operations
are represented as functions which produce intermediate
results. This issue is addressed by fusing chains of composed
or nested functions which only a↵ect the data layout (e.g.,
zip or gather). This involves recording information about
the accessed data in a view structure which is then used to
emit the appropriate array access expression. These indexing
expressions are then simplified using a symbolic algebraic
simplifier that relies on type information (e.g., array length
and value ranges). This leads to the generation of highly
e�cient GPU code competitive with hand-tuned kernels.

To summarize, we make the following contributions:

• We present a new data-parallel functional IR that targets
the OpenCL programming model;
• We show how semantic information embedded in the IR

is used in various phases such as memory allocation, ar-
ray access generation and optimizations, synchronization
minimization and control-flow simplification;
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