
High-Level Synthesis of Neural Networks for FPGAs

lift-project.org

Christof Schlaak – Andrej Ivanis – Christophe Dubach

Motivation

● Hardware platforms for NN Accelerators:

● FPGAs are reconfigurable

can exploit different types of NNs

can adapt to evolving NN implementations

Ease of programmability Efficiency

CPU
FPGA

GPU
ASIC

highly efficient
&

still reconfigurable

Problem

● FPGAs are not easy to use:
● Require hardware

design expertise
● Require use of low level

hardware language
● Steep learning curve for tools
● Workflow is not portable

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.common.all;

architecture behavioral of add is
begin

 process (clk)
 begin
 if rising_edge(clk) then
 data_out <= std_logic_vector(

unsigned(data_in_1) +
unsigned(data_in_2));

 data_out_valid <= data_in_1_valid and
data_in_2_valid;

 data_in_1_ready <= data_out_ready and
data_in_1_valid and
data_in_2_valid;

 data_in_2_ready <= data_out_ready and
data_in_1_valid and
data_in_2_valid;

 end if;
 end process;

end behavioral;

The Lift approach

● Specify behaviour in a high-level functional language
● Optimise using rewrite rules

● On algorithmic level &
● On hardware-specific level

● Generate hardware implementation
● Estimate design quality using a

performance model
● Feedback results into

new design generation

Advantages

● Target CPU, GPU and FPGAs
● Support arbitrary NN architectures
● Portable across many FPGAs
● Automatically optimised

map(λ arow .
map(λ bcol .

reduce(+, 0) ∘
map(X) ∘
zip(arow, bcol)

, transpose(B)
)
, A

)

LSTM GRU

Existing solutions

● OpenCL
● Outperformed by hand-written HDL

● High-level tools provided by vendors
(e.g. Xilinx SDAccel)

● Not as flexible as HDL
● May not support upcoming NN architectures

● HDL generation based on pre-built RTL
components

● Not flexible enough

	Slide 1

