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Context1
GEMM is ubiquitous in Deep Neural Networks (DNNs)
It is the basis of both stencil and im2col convolution methods

The problem2
How can we combine device-specific operators optimally?
How can we make the optimisations performance portable?
How can we automate and abstract the process from the user?

Hardware accelerators use N-dimensional computational units
These units are exposed in ISAs via coarse-grained operators:

The Lift approach3
1. Separate algorithm (WHAT) from 

implementation (HOW)

3.1 Concept

Data types
Int, Arrays
Float8 / Float16 / Float32

Algorithmic patterns
Map, Slide, Reduce, Zip
Join, Split

3.2 Functional data-parallel IR Language

3.3 Rewrite rules
Split-join rule Map fusion rule GEMV ruleGeneric and customisable

3 levels: DSL, algorithmic, hardware
Extensible

Example rewriting4

Preliminary results5

VVAdd32, VVAdd64, MVAdd64, MVAdd129
VVMul64, VVMul128, MVMul64, MVMul128

GEMM
imperative

GEMMfunctional

GEMM
optimised

2. Detect and rewrite patterns
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• Address space operators
toChip, toDram, toOutput

Arithmetic operators
ScalarAdd, VVAdd, MVAdd, MMAdd

ScalarMul, VVMul, MVMul, MMMul

VVRelu, VVTanh
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A fully connected layer

Functional correctness on the  
BrainWave accelerator
Performance measurements on 
Mali GPU
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