
Towards Mapping Lift To
Deep Neural Networks

Naums Mogers
Aaron Smith, Dimitrios Vytiniotis

Michel Steuwer, Christophe Dubach
Ryota Tomioka

Context1
GEMM is ubiquitous in Deep Neural Networks (DNNs)
It is the basis of both stencil and im2col convolution methods

The problem2
How can we combine device-specific operators optimally?
How can we make the optimisations performance portable?
How can we automate and abstract the process from the user?

Hardware accelerators use N-dimensional computational units
These units are exposed in ISAs via coarse-grained operators:

The Lift approach3
1. Separate algorithm (WHAT) from

implementation (HOW)

3.1 Concept

Data types
Int, Arrays
Float8 / Float16 / Float32

Algorithmic patterns
Map, Slide, Reduce, Zip
Join, Split

3.2 Functional data-parallel IR Language

3.3 Rewrite rules
Split-join rule Map fusion rule GEMV ruleGeneric and customisable

3 levels: DSL, algorithmic, hardware
Extensible

Example rewriting4

Preliminary results5

VVAdd32, VVAdd64, MVAdd64, MVAdd129
VVMul64, VVMul128, MVMul64, MVMul128

GEMM
imperative

GEMMfunctional

GEMM
optimised

2. Detect and rewrite patterns

•
•
•

•

• Address space operators
toChip, toDram, toOutput

Arithmetic operators
ScalarAdd, VVAdd, MVAdd, MMAdd

ScalarMul, VVMul, MVMul, MMMul

VVRelu, VVTanh

•

•

•
•
•

•
•

•
•

Lift

C C

Lift Lift

C

Lift

C

Lift

C

Lift

C

A fully connected layer

Functional correctness on the
BrainWave accelerator
Performance measurements on
Mali GPU

•

• 1

3.99

1.96
0.71

OpenBLAS clBLAS Lift Lift

R
e

la
ti

ve
 r

u
n

ti
m

e

Average runtime of conv layers in VGG

im2col
(GPU)

im2col
(GPU)

stencils
(GPU)(CPU)

