
High Performance stencil code Generation with lift
Bastian Hagedorn | Larisa Stoltzfus | Michel Steuwer | Sergei Gorlatch | Christophe Dubach

University of Münster, Germany | University of Edinburgh, UK | University of Glasgow, UK

multi-dimensional Stencil Computations

input

map (f)  ∘ slide (size, step)  ∘  pad (l, r, h) 2 2 2

=map(pad(l,r,h))∘
 pad(l,r,h)

outputLift 1. Boundary Handling 2. Neighborhoods 3. Output computation

pad Slide map

1D stencil In LIFT:

c
re-index value

f

High-level Programming

1D stencil

fun(ArrayType(Float, N), input =>
map(reduce (+) 0) o
 slide(3,1) o
 pad(1,1, clamp) $ input

Decomposing
Stencil computations:

=map(transpose)∘
 slide(size, step) ∘
 map(slide(size,step))

=map(
 map(f))

are expressed as compositions of inituitive, generic 1D primitives

map(f∘g)
=

map(f)
=

map-fusion

Low-level Optimizations

Lift Algorithmic
Rewriting

Mapping to
OpenCL

Code
Generation

Parameter
Tuning

join∘
map(map f)∘
split n

map(f)∘
map(g)

Rewritten expression
join∘map(map)∘split n∘slide∘pad

join∘mapWrg(mapLcl)∘split 128∘slide∘pad
Specialized Expression

Executable OpenCL Code
float void stencil1D(global float* A,...

dividie & Conquer

High-level expression
map∘slide∘pad

2

OpenCL-specific Expression
join∘mapWrg(mapLcl)∘split n∘slide∘pad1

G

Lift is a code generation approach based on a
high-level, data-parallel intermediate language.

It is designed as a target for DSLs and exploits
functional principles to produce high-performance
GPU code. Optimizations are all encoded as
formal, semantics-preserving rewrite rules.

These rules define an optimization space which
is automatically searched for high performance
code.

This approach liberates programmers
from the tedious process of re-writing and tuning
their code for each new domain or hardware.

IDEOLOGY & Concept

High-level expression
map∘slide∘pad

lift

2

 from high-level
 Programming to
 High-Performance
 stencil code?!

 --How is that
 even possible?

abstract
Stencil computations are used in a wide range of
applications from physical simulations to machine-
learning. optimizing and tuning them for parallel
hardware remains challenging.

LIFT is a new approach to achieving performance
portability based on a small set of reusable
parallel primitives. its key novelty is encoding of
optimization as a system of rewrite rules which
define the optimization space.

We extend LIFT with support for stencil computa-
tions By adding a small number of primitives toge-
ther with a few rewrite rules to achieve perfor-
mance portability for stencil computations.
Performance results on several applications show
that this approach leads to high performance.

Lift
2. High-level Programming

1. Low-level Optimizations

G. High Performance

funded by andEUROLAB-4-HPC

(†)

(‡)

(☨)

† † ☨☨ ‡

References:

[1] Bird, Richard S. "Algebraic identities for program
calculation." The Computer Journal 32.2 (1989): 122-126.

to be continued...

Lift

High-Performance

Speedup over Polyhedral compilation (PPCG)

12.2

ARM

AMD

Nvidia

Gaussian Gradient Heat Jacobi2D5pt Jacobi2D9pt Jacobi3D13pt Jacobi3D7pt Poisson

0

2

4

6

0

2

4

6

0

2

4

6

S
p

e
e

d
u

p
 o

v
e

r
P

P
C

G

size

small

large

Comparison with handwritten benchmarks

ACCEPTED AT CGO'18 b.hagedorn@wwu.de
www.lift-project.org

Lift achieves significant speedups compared to a
state-of-the-art polyhedral compiler on 3 architectures

Lift achieves the same - or even better -
performance than hand optimized code

Nvidia AMD ARM

Aco
us

tic

H
ot

sp
ot

2D

H
ot

sp
ot

3D

SR
AD

1

SR
AD

2

Ste
nc

il2
D

Aco
us

tic

H
ot

sp
ot

2D

H
ot

sp
ot

3D

SR
AD

1

SR
AD

2

Ste
nc

il2
D

Aco
us

tic

H
ot

sp
ot

2D

H
ot

sp
ot

3D

SR
AD

1

SR
AD

2

Ste
nc

il2
D

0.00

0.05

0.10

0.15

0.20

0

5

10

15

20

25

0

4

8

12

G
ig

a
e

le
m

e
n

ts
 p

e
r

S
e

c
o

n
d

version

Lift

Reference

