HIGH PERFORIMANCE STENCIL CODE GENERATION WITH LIFT

Bastian Hagedorn'| Larisa Stoltzfus™ | Michel Steuwer*| Sergei Gorlatch™| Christophe Dubach
University of Munster, Germany | University of Edinburgh, UK | University of Glasgow, UK

ABSTRACT

STENCIL COMPUTATIONS ARE HSED IN A WIDE RANGE OF %ﬁ%
APPLICATIONS FROM PHYSICAL SIMULATIONS TO MACHINE- N
LEARNING. OPTIMIZING AND TUNING THEM FOR PARALLEL HIGH-PERFORIWy;CE
HARDWARE REMAINS CHALLENGING. STENCIL CODE?!

LIFT 15 A NEW APPROACH TO ACHIEVING PERFORIMANCE --HOW 15 THAT \

PORTAEBILITY BASED ON A SMALL SET OF REUSABLE EVEN POSSIBLE? L [2. HeH-LEveL PROGRAMING
PARALLEL PRIMITIVES. ITS KEY NOVELTY 15 ENCODING OF ' ' ~ :

OPTIMIZATION AS A SYSTEM OF REWRITE RULES WHICH (] 1. Low-Lever oprimizamiows
DEFINE THE OPTIMIZATION SFPACE. | O c.nenm

WE EXTEND LIFT WITH SUPPORT FOR STENCIL COMPUTA-
TIONS BY ADDING A SMALL NUMBER OF PRIMITIVES TOGE-
THER WITH A FEW REWRITE RULES TO ACHIEVE PERFOR-
MANCE PORTABILITY FOR STENCIL COMPUTATIONS.
PERFORMANCE RESHLTS ON SEVERAL APPLICATIONS SHOW
THAT THIS APPROACH LEADS TO HIGH PERFORMANCE.

IMULTI-DIMENSIONAL STENCIL COMPUTATIONS

are expressed as compositions of inituitive, generic 1D primitives

DEC
5 Eﬂ I%’lﬂgﬂmﬂow:

2. NEIGHBORHOODS

D STENCIL

1. BOUNDARY HANDLING 3. OUTPUT COMPUTATION

it e |

map,(f) o slide,(size, step) o pad,(l, r, h)

=map(=map(transpose) =map(pad(l,r,h))e
map(f)) slide(size, step) o pad(l,r,h)
map(slide(size,step))

[BEE{SSTAER
al |-

fun(ArrayType(Float, N), input =>

0 STENCIL IN LIFT: (reduce (+) 0) 0

(1,1, clamp) $ input

LOW-LEVEL OPTIMIZATIONS map(f)

Lift is a code %eneration approach based on a

joine high-level, data-parallel intermediate language.
map(map f)o
split n

High-level expression

map-slide-pad It Is designhed as a target for DSLs and exploits

Algorithmic EJF%:tior&al %ir)cgipllest.to pI‘OdUCﬁ high-gegformance
: . iti code. imizations are all encoded as
Rewritten expression Rewriting D

formal, semantics-preserving rewrite rules.
Joine-map(map)-split noslide-pad Emp,; &5 co"aya

Mapping to These rules define an optimization space which
OpenCL-specific Expression OpenCL Is automatically searched for high performance

code.
joinemapWrg(mapLcl)-split n-slide-pad

Parameter

. 1 This aﬁproach liberates programmers
Tuning

from the tedious process of re-writing and tuning

Specialized Expression their code for each new domain or hardware.

joinemapWrg(mapLcl)-split 128-slide-pad

Code
Generation

Executable OpenCL Code

float void stencillD(global float* A,... MAP-FUYSION IDEOLOGya' CONCEH

A
SPEEDUP OVER POLYHEDRAL COMPILATION (PPCG) | J—

Lift achieves significant speedups compared to a

state-of-the-art polyhedral compiler on 3 architectures

Lift achieves the same - or even better -
performance than hand optimized code

15 - '
£ i 0.101
8
N § 54 0.05 1
i
4 0 0 0.00 -
000000000000000000000
21 NG \2\0\% \2\6@ 2 ¢ © \2\0\% \2\6@ = o ¢ © \2\0\6 Q\é@ % ¢
O- 3
AMD
O g
o 6
I

o

o

5 4

>

o

3 —

° ‘

(1]

= n =

& o |

ARM

64

o [
41 , i . 1
W .LIFT-PROJECT. [=]
2 - b [N |
O | | | | | | | | |
Gaussian Gradient Heat i i i i i

TO BE CONTINUED... §

